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DESIGN AND EXPERIMENTAL EVALUATION OF 
ELECTRICAL PARAMETERS OF SMALL WIND 
GENERATOR 

KONŠTRUKCIA A EXPERIMENTÁLNE HODNOTENIE 
ELEKTRICKÝCH PARAMETROV MALÉHO VETERNÉHO 
GENERÁTORA 

Peter Koleda, Peter Hadžega 

Department of Manufacturing and Automation Technology, Faculty of Technology, Technical 
University in Zvolen, T. G. Masaryka 54, 960 01 Zvolen, Slovakia, peter.koleda@tuzvo.sk 

ABSTRACT: This paper presents the design and experimental verification of a small wind generator employing 
a levitation-based rotor support. The mechanical and electrical components of the system are described, with power 
generation based on the principle of electromagnetic induction – specifically, the induction of voltage in a 
conductor resulting from temporal changes in the magnetic field. The magnetic bearing of the rotor enables a 
significant reduction in mechanical friction, thereby improving the overall system efficiency. Experimental results 
confirm the agreement between the measured and theoretically calculated frequencies of the generated voltage, 
derived from the rotor speed and the number of magnetic poles. The study also includes an analysis of the induced 
voltage magnitude in individual stator windings. Finally, potential optimization approaches and future research 
directions for small wind generators with magnetic bearing systems are discussed. 

Key words: renewable resources, wind generator, magnetic bearing system, induced voltage 

ABSTRAKT: Tento článok prezentuje návrh a experimentálne overenie funkčnosti malého veterného generátora 
využívajúceho levitačný princíp uloženia rotora. Opísané sú konštrukčné riešenia mechanickej a elektrickej časti 
zariadenia, pričom výroba elektrickej energie je založená na princípe elektromagnetickej indukcie, teda na indukcii 
napätia vo vodiči v dôsledku časovej zmeny magnetického poľa. Magnetické uloženie rotora umožňuje výrazné 
zníženie mechanického trenia a tým prispieva k zvýšeniu účinnosti systému. Experimentálne výsledky potvrdzujú 
zhodu medzi nameranou a teoreticky vypočítanou frekvenciou generovaného napätia, odvodenou z otáčok rotora 
a počtu magnetických pólov. Súčasťou článku je aj analýza veľkosti indukovaného napätia na jednotlivých 
statorových vinutiach. V závere sú diskutované možnosti optimalizácie konštrukcie a smerovanie ďalšieho 
výskumu v oblasti malých veterných generátorov s magnetickým uložením. 

Kľúčové slová: obnoviteľné zdroje, veterný generátor, magnetické uloženie, indukované napätie 

INTRODUCTION 
Decentralized electricity production through small wind turbines is a key element of 

local energy, island systems and strengthening the energy resilience of communities. According 
to the IEC 61400 family of standards, “small” turbines are generally considered to be those with 
a rotor area of less than 200 m2 and a nominal voltage of up to 1,000 V AC or 1,500 V DC. The 
standard also specifies load classes and safety requirements for the design, installation and 
operation of these devices (International Electrotechnical Commission [IEC], 2020, 2019, 
2022). 

Compared to large onshore or offshore wind farms, small wind turbines are designed 
for local use of wind resources, often in rural environments with open wind flow, but also in 
built-up environments (buildings, roofs, masts). The key technical limitations are low to 
medium wind speeds and high turbulence, which reduce power utilization and increase fatigue 
loads. Recent eddy current simulations and experiments confirm that the breakdown of speed 
and turbulence structures at start-up fundamentally affects the power curve and dynamic 
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stresses; therefore, site selection and aerodynamic optimization are critical even for small 
generators (Jézéquel et al., 2024, Abkar and Porté-Agel 2015). 

In terms of rotor typology, the principles of horizontal-axis wind turbines (HAWT) and 
vertical-axis wind turbines (VAWT) are applied in small wind simulators. In urban and 
suburban conditions, VAWTs are often investigated for their better resistance to turbulent and 
changing flows. Current studies show that a certain level of turbulence can even slightly 
improve the average power output and promote self-starting, although the effects are limited 
and sensitive to the geometry and distances between turbines (Yang et al., 2024, Al-Rawajfeh 
and Gooma 2023). A broader review of micro- to small-scale wind technologies and their 
integration into buildings points to the potential, but also to persistent limits in wind field 
estimation, interactions with buildings and capacity factors (Calautit and Johnstone 2023). 

The theoretical maximum efficiency for axial turbines is given by the Betz limit (~59%) 
(Betz 1966, Arif 2019); real aerodynamic and electro-mechanical losses lead to a lower actual 
ratio of captured energy. The capacity factor for low winds is highly dependent on local 
conditions; for onshore turbines, a wide dispersion is generally reported in the literature (about 
9 – 53% depending on location and design), while in built-up environments at low winds the 
capacity tends to be at the lower end of this range due to low speeds and increased turbulence 
(Center for Sustainable Systems 2024). 

The aim of the article is to design a small experimental wind generator based on the 
levitation principle and verify its functionality by measuring the induced current in the stator 
winding. 

MATERIAL AND METHODS 
The experimental wind generator converts the kinetic energy of the air flow into 

electrical energy by using electromagnetic induction in the stator coils. Its structural assembly 
was designed in SolidWorks and is shown in Fig. 1. The functional model is shown in Fig. 2. 

 

 
Fig. 1 Assembly of wind generator 

 Obr.1 Zostava veterného generátora 
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1 – centring part, 2 – stator with 6 coils, 3 – rotor with 8 neodymium magnets M1 with 
dimensions of 30 × 10 × 2 mm, 4 – circular neodymium magnets M2 with dimensions 

of Ø 32 × 18 × 4 mm, 5 – shaft, 6 – weight, 7 – case, 8 – propeller, 9 – frame from 
aluminium profile 40 × 40 mm, 10 – Y-shaped holder of magnets M3, 11 – circular 
neodymium magnets M3 with dimensions of Ø 20 × 8 × 5 mm, 12 – aluminium L 

profile 40 × 40 mm 
 

 
Fig. 2 Wind generator 

Obr. 2 Veterný generátor 
 
The device consists of a rotor (3) containing eight neodymium magnets M1 type N42 

with dimensions of 30 × 10 × 2 mm, with a pull-out force of approximately 2.6 kg per magnet. 
These magnets are evenly distributed in a circle, creating a symmetrical magnetic field 
necessary for inducing voltage in the stator coils (2). 

 

 
Fig. 3 Detail of rotor with eight permanent magnets M1  

Obr. 3 Detail rotora s ôsmimi permanentnými magnetmi M1 

M1 
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The stator part is connected to the frame with screws and consists of six copper coils 

(Fig. 4), each of which contains 25 turns of coil wire Ø 0.50 mm (cross-section 0.196 mm²). 
The coils are positioned so that the magnetic lines of force of rotating magnet periodically 
intersect the coils, which leads to the induction of an electric current according to Faraday's 
law. 

 

 
Fig. 4 Detail of stator with six copper coils 

Obr. 4 Detail statora so šiestimi medenými cievkami 
 
One of the design elements of the generator is the use of a levitation system (Fig. 5), 

which minimize friction. The rotor shaft is equipped with two groups of 10 circular neodymium 
magnets M2 (type N38) with dimensions of Ø 32 × 18 mm and a height of 4 mm, with a tear-
off force of approximately 7.5 kg. These are mounted on supporting neodymium magnets M3 
(type N38) in the number of 6 × 8 pcs and dimensions Ø 20 × 8 mm, height 5 mm, with a tear-
off force of approximately 6.3 kg. By magnetic repulsion, the rotor shaft floats between these 
rows of magnets, which allows smooth rotation almost without mechanical contact. The rotor 
shaft is also driven by a propeller that uses air flow as a renewable energy source. 
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Fig. 5 Detail of magnetic bearing of generator 
Obr. 5 Detail magnetického ložiska generátora 

 
Another element of the magnetic guide is the centring part (Fig. 6) fitted on the inside 

with a neodymium magnet M4 Ø 10 × 10 mm, type N42, with a tear-off force of approximately 
3.9 kg, which stabilizes the shaft tip in the desired position. The part is also shaped with a radius 
R150, which ensures automatic centring of the shaft during its operation (rotation). The shaft 
tip has a tip turned to a radius R6. The magnetic guide created in this way not only keeps the 
rotor in the axis but also maintains low friction. 

M2 

M3 
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Fig. 6 Cross section of the centering part with magnet Ø 10 × 10 mm 

Obr. 6 Prierez strediacim dielom s magnetom Ø 10 × 10 mm 
 
The generator construction was designed with an emphasis on simplicity, modularity 

and low weight. The generator frame was made of 40 × 40 mm aluminium structural profiles, 
which ensure sufficient strength while allowing flexibility in assembling, expanding or 
modifying the generator set. 

All key structural elements of the generator, including the rotor, stator, and Y-shaped 
magnet holders, were designed in 3D SolidWorks software. These parts were then 
manufactured on a powder 3D printer Formlabs fuse 1, which is designed for precise and 
efficient printing of functional parts from plastic powder (SLS technology), enabling high levels 
of accuracy, individual shape customization, and rapid prototyping. 

The individual parts, such as the stator base, magnet holders and support brackets, were 
then firmly attached to the frame made of aluminium profiles using screw connections. This 
method of attachment ensures sufficient stability during operation, while also facilitating the 
disassembly or replacement of individual components during system testing and tuning. 

The rotor part with permanent magnets and pressed-in bushings was firmly mounted on 
the generator shaft. This ensured mechanical stability, alignment and smooth movement during 
rotation, which is essential for the efficient conversion of mechanical into electrical energy 
through electromagnetic induction. 

 
Theoretical calculation of induced voltage for the designed wind generator 
In the plane of a sinusoidal waveform, according to Faraday's law, the amplitude of the 

voltage generated on the coil when the magnetic flux changes is: 

𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑁𝑁 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  [V], (1) 

M4 
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where Φ is magnetic flux (V.s), N is number of turns. 
For harmonic signal with frequency 𝑓𝑓 and angular frequency 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 it can be written: 
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴 [V], (2) 

where A [m2] is coil conductor cross-section, B [T] is magnetic induction. 
 
Used parameters for computation of generated voltage in one coil are in table 1. 
 

Table 1 Parameters of computation for one generator coil 
Tabuľka 1 Parametre výpočtu pre jednu cievku generátora 

Parameter Value 

Number of threads N [-] 25 

Coil conductor cross-section A [m2] 2,56 . 10-5 

Assumed induction B in the working gap for a 

magnet of type N42 [T] 

0,7 

Revolutions n [RPM] 400 

Number of coil pairs p [-] 4 

 

Electric frequency of signal can be computed by term: 
𝑓𝑓𝑒𝑒 = 𝑝𝑝 ×  𝑓𝑓𝑚𝑚 =  4 ×  6,667 ≈ 26,6 Hz, (3) 

where, 𝑝𝑝 are pole pairs and 𝑓𝑓𝑚𝑚 [Hz] is mechanical frequency of rotor rotations: 
𝑓𝑓𝑚𝑚 = 𝑛𝑛

60
= 400

60
= 6,667 Hz. (4) 

Angular frequency of rotor can be computed as: 
 𝜔𝜔 = 2𝜋𝜋𝑓𝑓𝑒𝑒 ≈ 167,6 rad. s−1. (5) 

By substitution into (2), the amplitude of inducted voltage in winding is: 
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 25 ×  2,56 × 10−5  ×  0,7 ×  167,6 ≈ 0,165 V (6) 

and RMS value: 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
√2

≈ 0,165
1,414

≈ 0,117 V. (7) 

RESULTS AND DISCUSSION 
To verify the functionality of the assembled generator, a workstation was assembled as 

shown in Fig. 7. A turbocharger with a Hitachi SJ200 frequency converter was used to spin the 
rotor using a stable air flow, due to the possibility of setting the required speed. Measurements 
were made at the output of one phase of the stator using a two-channel oscilloscope Tektronix 
TDS 2002B. 
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Fig. 7 Laboratory equipment with generator and oscilloscope  
Obr. 7 Laboratórne pracovisko s generátorom a osciloskopom 

 

Fig. 8 shows the voltage waveform at a rotor speed of 400 min-1. The measurement 
parameters read from the measured waveform are summarized in Table 2. 

 

 
Fig. 8 The result of measuring the generator voltage on an oscilloscope Tektronix TDS 2002B 

(CH1: 100 mV, Timebase: 10 ms) 
Obr. 8 Výsledok merania napätia generátora na osciloskope Tektronix TDS 2002B  

(CH1: 100 mV, časová základňa: 10 ms) 
 
 
 
 
 
 
 

air blower 

oscilloscope 

tachometer 
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Table 2 Parameters of experimental measurement 
Tab. 2 Parametre experimentálneho merania 

Parameter Value 
Mechanical revolutions 400 min-1 
Number of coil pairs 8 poles (4 pairs) 
Number of stator coils 6 coils 
Vertical scale 100 mV 
Horizontal scale 10 ms 
Peak voltage ± 150 mV  
Signal shape Sinusoidal-pulsed with gentle 

overshoot 

 

According to Faraday's law, the amplitude of the induced voltage Epeak is expressed by 
the equation (2) and by substituting it into the equation (6), its value is 0.165 V and the RMS 
value (7) is 0.117 V. Fig. 18 shows the measured waveforms and values, which confirm that 
Epeak is approximately 0.14 – 0.16 V and Erms is 0.10 – 0.11 V. The slight deviation between the 
expected and measured voltage from the oscilloscope measurement can be caused by the gap 
between the rotor and stator of the generator where the value of magnetic induction B = 0.7 T 
is probably smaller. 

The mechanical frequency of rotation is calculated as: 

𝑓𝑓𝑚𝑚 = 400min−1
60

 ≈  6,66 Hz (8) 

and in combination with 4 electric pairs, it produces voltage with frequency 
𝑓𝑓𝑒𝑒 = 𝑓𝑓𝑚𝑚  ×  𝑝𝑝 ≈  6,66 × 4 = 26,66 Hz, (9) 

what is a periodic cycle ≈ 37,7 ms (≈ 3,8 div at 10 ms/div). 
If we consider that one "transition" between positive and negative peaks (half-period) 

lasts ≈ 20 ms, then it can be calculated:  
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1

𝑇𝑇
= 1

0,02𝑠𝑠
= 50 Hz. (10) 

Measured mechanical frequency of rotor rotation is 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝑓𝑓𝑚𝑚  ×  8 ≈ 6,66 × 8 = 53,28 Hz. (11) 

The difference between the theoretical frequency 50 Hz and the measured 53.28 Hz is 
caused by the inaccuracy of the oscilloscope time base reading and the rotor speed fluctuations. 
For a complete AC voltage cycle (full period) then: 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2

≈ 53,28
2

= 26,64 Hz, (12) 

where: 
𝑓𝑓𝑚𝑚 is mechanical frequency of rotor revolutions [Hz], 𝑓𝑓𝑒𝑒 is electric frequency of induced 

voltage [Hz], 𝑝𝑝 is number of coil pairs, 𝑇𝑇 is half period [s], 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is frequency of transition 
between positive and negative peak voltage [Hz], 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is frequency of full period [Hz]. 

 
The shape of the signal course shows: 

1. Rapid voltage rise as the pole passes through the centre of the coil. 
2. Oscillatory reverberation when crossing zero coupling – a consequence of the 

resonance of the winding system and parasitic capacitances. 
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3. Symmetrical positive and negative maxima, which confirms the correct balance 
of the magnetic field and the correspondence of the revolutions with the 
theoretical design. 

These results confirm that the generator design with eight magnets on the rotor and six 
coils on the stator delivers a stable AC signal with a spectrum suitable for low-speed wind 
applications. 

CONCLUSION 

A model of a wind generator was designed and manufactured, the main elements of 
which are a rotor with eight neodymium magnets, a stator with six copper coils and magnetic 
bearings. These components enable contactless and almost lossless transfer of mechanical 
energy to electrical energy, while the resulting alternating current can be further analysed using 
the designed laboratory measuring station. 

Testing of the generator demonstrated its functionality and confirmed the validity of the 
physical assumptions based on Faraday's law of electromagnetic induction. Measurements 
showed that at a rotor speed of 400 min-1 (≈ 6.66 Hz) the generator produced an average output 
voltage with an amplitude of ±150 mV, which differs only minimally from the theoretical 
calculation of 165 mV, and an electrical frequency of approximately 26.5 Hz, which 
corresponds to the theoretical calculation for four electrical pairs of poles (8 polarity transitions 
per revolution). The measured half-cycle transitions lasted approximately 20 ms (≈ 53 Hz), with 
a negligible deviation from the calculated 50 Hz caused by the inaccuracy of the time base 
reading and speed fluctuations. 

The identified technical shortcomings, such as the limited stabilization angle of the rotor 
or the absence of directional turning according to the wind, provide possibilities for further 
development and optimization of the device. The proposed solutions may contribute to the 
creation of an efficient low-cost system for generating electricity for remote areas in the future.  
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CCT DIAGRAMS FOR SINTERHARDENING OF PM 
CHROMIUM-MOLYBDENUM MASTER ALLOY STEELS 
WITH HYBRID ALLOYING POWDERS 

CCT DIAGRAMY PRE SINTERHARDENING PM CHROM-
MOLYBDÉNOVÝCH PREDLEGOVANÝCH OCELÍ S HYBRID-
NÝMI LEGUJÚCIMI PRÁŠKAMI 

Dmitriy Koblik1, Miroslava Ťavodová2,  

1 Faculty of Technology, Technical University in Zvolen. Študentská ulica 26, 960 01 Zvolen, Slovakia. 
E-mail: dmitriy.koblik@gevorkyan.sk 
2Faculty of Technology, Technical University in Zvolen. Študentská ulica 26, 960 01 Zvolen, Slovakia. 
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ABSTRACT: The article reviews the possibilities of introducing alloying elements into the material formed by 
powder metallurgy, in order to adjust the alloying element content. There are several methods in powder 
metallurgy (PM) and each alloying method has its advantages and disadvantages. Master alloys (MA), powders 
with a high content of typically several alloying elements, can be added in small amounts to the base powder, 
especially to introduce oxygen-sensitive elements such as Cr, Mn and Si. In addition, Master alloys can be designed 
to form a liquid phase during the sintering process. This will ensure an improved distribution of the alloying 
elements in the material and thus accelerate homogenization. In this study, such MAs were combined with pre-
alloyed Cr-Mo base powders to form hybrid alloy mixtures with the aim of improving the hardenability of the 
material during sinterhardening. The hybrid alloys were compared with mixtures of MA and pure iron as a 
reference material. The hardenability during sinterhardening of all materials was determined by creating 
Continuous Cooling Transformation (CCT) diagrams recorded with different cooling rates. 

Key words: sinterhardening, sintering, prealloyed material, master alloy (MA), cooling rate, CCT diagram 

ABSTRAKT: Článok sa zaoberá prehľadom možností zavadzania legujúcich prvkov do materiálu, vytvoreného 
práškovou metalugiou, s cieľom upraviť obsah legujúcich prvkov. V práškovej metalurgii (PM) existuje niekoľko 
spôsobov a každý spôsob legovania má svoje výhody a nevýhody. Master alloys (MA), prášky s vysokým 
obsahom typicky niekoľkých legujúcich prvkov sa môžu pridávať v malých množstvách do základného prášku, 
najmä na zavedenie prvkov citlivých na kyslík, ako sú Cr, Mn a Si. Okrem toho môže byť Master alloys navrhnuté 
tak, aby sa počas procesu spekania vytvorila kvapalná fáza. To zabezpečí zlepšenie rozloženia legujúcich prvkov 
v materiáli a urýchlili sa tak homogenizácia. V tejto štúdii boli takéto MA kombinované s predlegovanými 
základnými práškami Cr-Mo za účelom vytvorenia hybridných legovaných zmesi s cieľom zlepšiť kaliteľnosť 
materiálu počas sinterhardeningu. Hybridné zliatiny boli porovnávané so zmesami MA a čistého železa ako 
referenčného materiálu. Kaliteľnosť počas sinterhardeningu všetkých materiálov bola stanovená vytvorením 
Continuous Cooling Transformation (CCT) diagramov zaznamenaných s rôznymi rýchlosťami chladenia.  

Kľúčové slová: sinterhardening, spekanie, predlegovaný materiál, master alloy (MA), rýchlosť chladenia, CCT 
diagram 

INTRODUCTION 
Industrial trends over the past decade have significantly increased the demands on mass 

production of parts, especially in the automotive industry. Cost reduction, high quality 
standards for millions of manufactured parts, such as high precision, mechanical properties, 
environmental requirements have contributed to the accelerated development of powder 
metallurgy. For the further expansion of PM into new industrial areas and applications, 
materials with improved properties are needed. One such method is the sinterhardening process. 
The sinterhardening process significantly simplifies the production of parts, as sintering and 
hardening  are  integrated into one cycle.  This solution achieves the controlled formation  of a
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martensitic structure that occurs during cooling after sintering. As a result, hardness and 
mechanical properties are improved. The process uses special sintering furnaces in which a 
suitably designed controlled cooling zone is applied. This eliminates the need for a separate 
thermomechanical hardening process, eliminating the need to design additional operations and 
minimizing costs and production time (Engström, et al. 2020) (Kalss, et al. 2022). 

Achieving high dimensional accuracy of components is another fundamental advantage 
of sinterhardening. Since the entire thermal transformation occurs within a single operation, the 
risk of thermal deformation and subsequent distortion of the part is significantly reduced. This 
accuracy is especially valued in areas where tolerances are crucial – for example, in the 
automotive, aerospace or military industries. In addition, automated process integration ensures 
consistency of the resulting properties of the parts, which is important from the point of view 
of the quality and reliability of the final products (Gábrišová, et al. 2019). 

The energy efficiency of sinterhardening is another significant benefit. Compared to 
traditional methods, where separate heat treatments (such as superheating, rapid cooling, 
washing and subsequent tempering) are required, sinterhardening can reduce energy 
consumption by up to 60 %. Manipulating the temperature profile directly during sintering not 
only reduces energy consumption, but also the need for additional processing of parts, which 
also reduces operating costs. This environmentally friendly approach is also beneficial for 
manufacturers striving for more sustainable production (Krauss, 2015) (Kozový, et al. 2023). 

The main limitation is the low cooling rate achieved during sinterhardening. In current 
industrial furnaces, cooling rates of 2-5 K.sec-1 can be achieved. In addition, as shown by 
(Bocchini, 2002), the surface to volume ratio also plays an important role, since the heat transfer 
between the part and the atmosphere is a factor determining the cooling rate. 

To compensate for the slow cooling compared to oil quenching, the alloying system 
must be adjusted accordingly, requiring a higher content of alloying elements. Special PM steel 
grades have been developed for sintering, for example based on pre-alloyed Fe-Mo powder 
with diffusion-bonded Cu or Cu + Ni (Engström, et al. 2002) (Karamchedu, et al. 2014).      

These alloying elements are often used in PM because of their low affinity for oxygen. 
Therefore, any oxides in the pressings can be easily reduced during sintering and the risk of 
oxygen capture from the sintering atmosphere is also minimal. However, these elements are 
expensive and Ni is classified as carcinogenic, as some result elements such as Cr are 
increasingly considered advantageous, and Cr and Cr-Mo overalloyed powders are now 
commercially available at a reasonable price (Berg, Maroli, 2002). These powders have more 
precise requirements regarding the chemical composition and quality of the sintering 
atmosphere, but this is now manageable and it has been shown that this class of materials is 
also suitable for sintering, at least if the desired result is a martensitic structure. Carbon control 
is also essential for sintered steels and is more complex than for metallic steels, especially for 
sintered steels alloyed with elements with a high affinity for oxygen, such as Cr, Mn and Si, 
which makes carbon loss during sintering a key issue. This also applies to high-temperature 
sintering, when deoxidation is greater, but at the cost of higher carbon loss (Danninger, Giert, 
2001).       

Unlike metal parts, in PM, not only the choice of alloying elements but also the alloying 
method is a parameter that affects the properties of the final material. One way to add several 
alloying elements is to admix MA. MA is a powder with a high alloying element content, which 
usually contains several elements combined in one powder. It is a good way to supplement 
oxygen-sensitive elements such as Cr, Mn and Si. In addition, MA can be designed to form a 
liquid phase during the sintering process to improve the distribution of alloying elements in the 
material and to accelerate homogenization. Pre-alloyed powders show a homogeneous 
distribution of alloying elements, but due to solution hardening, the powders are harder and 
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therefore less compactable than pure elemental powders of each element (Kalss, 2007) 
(Mardan, M., Blais 2016). It has proven difficult to sinterharden steels from most prealloyed 
powders under standard conditions without the addition of additional alloying elements, except 
for powders with relatively high alloying element content, which multiplies the cost and the 
problem of pressing (Hoganas, 2017) Geroldinger 2021). 

By implementing new automation techniques, such as high-pressure water atomization 
of powder, it is now possible to produce MA powders containing Fe, Si, C, Cr and Mn with low 
oxygen content (De oro Calderon, 2019) (Geroldinger, 2019). 

MATERIAL AND METHODS 
 A discussion about the efficiency and performance possibilities of modern metal 
manufacturing is incomplete without the concept of sintering in powder metallurgy. 
Conventional sintering processes are the bread and butter of improving a part with PM. This 
process heats the compacted part to fuse the loosely bonded particles for improved strength and 
hardness. After sintering, the powder metal part is often heat treated by reheating to permit 
quenching and tempering. This further increases the hardness and strength of the compacted 
component (Gábrišová, et al. 2019). One advantage of powder metallurgy is the ability to sinter 
the part and then, thanks to controlled cooling, create a wide variety of strength and hardness 
combinations. At one end of this range is very slow cooling to create a soft magnetic part; the 
other extreme is effectively atmosphere quenching the part to form a martensitic structure with 
the same hardness as quenching - but without the additional processing (Knaislová, et al. 2017). 

Out of several metal hardening process types, sinter hardening stands out. It combines 
the benefits of sintering and hardening into one operation. Secondary operations are minimized 
and greater dimensional accuracy is achieved. 

Figure 1a shows characteristics of conventional sintering. Conventional sintering has 
greater flexibility in material selection, need to have secondary hardening operation (if 
required), potential of larger distortion due to heat treatment, ideal for DC magnetic properties. 
 

 
Figure 1 Conventional sintering processes (a,); sintering with the inclusion of heat treatment 

(b,) 
Obrázok 1 Postupy konvenčného spekania (a,); spekanie so zaradením tepelného spracovania 

- sinterhardening (b,)  
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The Figure 1b shows characteristics of sinterhardening. The sinter hardening has heat 
treatment incorporated into sintering circle, reduced processing steps, greater dimensional 
precision, reduced material flexibility heat treatment incorporated into sintering circle, reduced 
processing steps, greater dimensional precision, reduced material flexibility. 

Conventional heat treatment (reheating and quenching) forms martensite within the part 
that has high hardness but is quite brittle. Tempering lowers the hardness slightly but 
dramatically increases the strength. This has been the tried-and-true method for hardening in 
both PM and conventional parts manufacturing. However, using special sintering furnaces 
coupled with engineered powder materials creates the opportunity to eliminate the reheating 
step and merge it into the sintering step. This gives the same transformation along with the 
advantages of strength and hardness. 

Sinterhardening allows for improved mechanical properties of parts. The resulting 
martensitic structure provides a combination of high hardness and wear resistance, which is 
especially important for components exposed to high mechanical stress. In addition, the 
optimized process ensures minimal variability of properties between individual products, which 
significantly contributes to the overall reliability and performance of the products. 

The article presents the results of sinterhardening of materials ASC100.29, 
Astaloy85Mo, AstaloyCrA, AstaloyCrM and Astaloy CrS with MA addition. Alloying 
elements were measured using laser ablation mass spectrometry and inductively coupled 
plasma. Carbon content was determined by C-LECO measurements. For the measurement, the 
standard for steel pins was 501-679, with a content of 0.799±0.011 wt. % carbon. The powders 
were mixed in a Turbula mixer for 10 minutes according to the standard industrial procedure. 
Samples with dimensions of 10 x 7 x 4 mm were pressed at a pressure of 600 MPa and Multical 
calibration oil was used. The pressings were isothermally sintered at T=1 300 °C for 1 hour. 
under defined conditions in an electrically heated furnace with a gas-tight tubular retort under 
an atmosphere of high-purity argon and cooled to room temperature in the furnace outlet zone 
with water cooling at rates of 1.5 and 3.0 K.sec-1. 

The composition of the materials used is given in Table 1, the composition of the powder 
mixes is given in Table 2. 
 
Table 1 Chemical composition of basic materials 
Tabuľka 1 Zloženie základných materiálov 

Basic material1) 
Chemical composition of basic material2) [wt.%] 

Fe Si Mn Cr Mo C 

ASC100.29 99.81 0.00 0.13 0.05 0.01 0.00 

Astaloy85Mo 98.93 0.00 0.17 0.05 0.85 0.00 

AstaloyCrA 98.01 0.03 0.13 1.80 0.03 0.00 

AstaloyCrM 96.32 0.03 0.15 3.00 0.50 0.00 

AstaloyCrS 98.82 0.03 0.15 0.85 0.15 0.00 

H45 56.00 8.00 0.00 32.00 0.00 4.00 

H46 48.00 6.00 42.00 0.00 0.00 4.00 

H47 35.30 6.00 28.00 27.00 0.00 3.70 

H166 56.10 7.50 33.00 0.00 0.00 3.4 

H200 49.50 9.00 40.00 0.00 0.00 1.5 

 1)Základný materiál, 2)Chemické zloženie základného materiálu 
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Table 2 Composition of powder mixes 
Tabuľka 2 Zloženie práškových mixov 

Powder mixes1) 
Chemical composition of basic material2) [wt.%] 

Fe Si Mn Cr Mo C 

ASC + 4%H45 97.89 0.39 0.13 1.09 0.01 0.49 

ASC + 4%H46 97.83 0.21 1.46 0.05 0.01 0.44 

ASC + 4%H47 97.49 0.32 0.88 0.82 0.01 0.48 

Ast85Mo + 4%H45 96.89 0.38 0.17 1.24 0.83 0.49 

Ast85Mo + 4%H46 97.23 0.24 1.23 0.05 0.81 0.44 

Ast85Mo + 4%H47 96.50 0.34 0.94 0.91 0.82 0.49 

AstCrA + 4%H45 96.31 0.47 0.13 2.60 0.03 0.46 

AstCrA + 4%H46 96.15 0.31 1.44 1.65 0.03 0.42 

AstCrA + 4%H47 95.45 0.44 1.03 2.58 0.03 0.47 

AstCrM + 4%H45 95.01 0.44 0.15 3.49 0.47 0.44 

AstCrM + 4%H46 94.91 0.28 1.07 2.87 0.48 0.39 

AstCrM + 4%H47 94.26 0.45 0.91 3.48 0.46 0.44 

Ast85Mo + 4%H166 96.39 0.32 1.44 0.03 0.84 0.69 

Ast85Mo + 4%H200 96.34 0.35 1.72 0.02 0.86 0.71 

AstCrS + 4%H166 96.53 0.31 1.45 0.84 0.13 0.74 

AstCrS + 4%H200 96.20 0.36 1.73 0.85 0.13 0.73 

      1)Práškový mix, 2)Chemické zloženie základného materiálu 

RESULTS AND DISCUSSION 
It is clear that the iron powder steels ASC100.29 and lower alloyed master alloys such 

as Astaloy85Mo and AstaloyCrA cannot be hardened by sinterhardening at industrially 
achievable cooling rates, at least at this carbon content. AstaloyCrM can form a martensitic 
microstructure without any additional alloying elements (Kalss, 2007) (Krauss, 2015). For all 
other steels it is clear that if martensitic hardening is desired at conventional sinterhardening 
cooling rates, additional alloying elements need to be added to the material.  

Figure 2 shows the CCT diagrams of various base powders + 4% H45 (MA Cr-Si). 
These CCT diagrams are shown here as examples. Similar CCT diagrams were created with 
other base powder + MA combinations. Sintered steels made from ASC100.29 iron powder, at 
least with the carbon content chosen here, cannot be hardened under standard sintering 
conditions, even in combination with MA, with the exception of H47 (MA Mn-Cr-Si) 
(Geroldinger, 2019). In contrast, hybrid alloy powder mixtures can be hardened by 
sinterhardening at a cooling rate of 1.5 K.sec-1, sometimes even lower. This means that at the 
carbon content considered in this study, pre-alloyed powders should be combined with MA 
powder (hybrid alloying) if a martensitic microstructure is desired. Although it is possible to 
achieve a martensitic microstructure with AstaloyCrM without MA, the combination with MA 
leads to even higher macro- and microhardness. The Figure 3d shows the CCT diagram of the 
hybrid powder mixture AstaloyCrM + 4% H45. It can be observed that at cooling rates of 1 
K.sec-1 and 0.75 K.sec-1 pearlite formation occurs in the hybrid alloy material. The reason for 
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this finding is that the heat treatment at the investigated temperatures and times may not be 
sufficient to completely dissolve the carbides in the material, and therefore less dissolved 
carbon is available in the austenitic matrix than it should be nominally (Kozový, et al. 2023). 

 
 

Figure 2 CCT diagram of powders obtained by mixing with 4%H45 (Geroldinger, 2019) 
Obrázok 2 CCT diagram práškov, získaných mixom s 4%H45 (Geroldinger, 2019) 

  
 Regarding the combination of MA with Astaloy85Mo and AstaloyCrS, to characterize 
the sinterhardening and in particular to reliably estimate the effective cooling rates leading to 
martensitic microstructures, CCT diagrams were evaluated in a quenching dilatometer. These 
are shown in Figure 3 (Geroldinger et al, 2024), the transformations were identified from the 
cooling graphs. These diagrams clearly confirm that the pre-alloyed materials do not sinter and 
do not harden even at higher carbon levels; quenching would require cooling rates that are 
significantly higher than those possible in industrial furnaces. The addition of pre-alloyed MA 
drastically increases the hardenability: even at cooling rates as low as 1 K.sec-1, no bainitic or 
pearlitic transformation is visible. This is in agreement with the relatively high hardness levels 
after sintering and the partially martensitic microstructures after sintering. 

However, it should be considered that, as reported for example by (Geroldinger et al, 
2021), small areas with bainitic or pearlitic transformation are not shown in the CCT diagram. 
Although the diagram predicts fully martensitic microstructures, metallography may reveal 
some pearlite or bainite, especially in the cores of the largest particles of the former base 
powder. In practice, the system tolerance is relevant in terms of cooling rate. For Astaloy85Mo-
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MA-C, the CCT diagram indicates bainite at cooling rates <1 K.sec-1. In this material, even the 
cores of the larger particles were sufficiently alloyed, leading to full martensitic transformation 
at 3 K.sec-1. 

 

 
Figure 3 CCT diagram of powders obtained by mixing with 4%H200 (Geroldinger et al, 

2024) 
Obrázok 3 CCT diagram práškov, získaných mixom s 4%H200 (Geroldinger et al, 2024) 

 
The admixture of master alloys has a high impact on the hardenability of the material, 

and, therefore, the mechanical and fatigue properties. This type of alloying is very promising 
for improving the properties of low-alloy steels (such as AstaloyCrS and AstaloyCrA) while 
maintaining a competitive price. 

CONCLUSION 
Sinterhardening combines the advantages of sintering and hardening into a single 

operation. Secondary operations are minimized and greater dimensional accuracy is achieved. 
The article presents the results of sinterhardening of the materials ASC100.29, Astaloy85Mo, 
AstaloyCrA, AstaloyCrM and Astaloy CrS with the addition of MA, as individual authors have 
investigated and published the results of experiments with powder mixes. Hybrid alloys were 
compared with mixtures of MA and a reference material - pure Fe. Hardenability during 
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sinterhardening of all materials was determined by creating Continuous Cooling 
Transformation (CCT) diagrams, recorded at different cooling rates.  

We can summarize the results and conclude that the hybrid alloying technique, which 
means the combination of pre-alloyed powder and MA powder, significantly improves 
hardenability compared to steels made from pure iron powder. Martensitic hardening of pure 
Fe powder could be achieved at a rate of 3 K.sec-1 and MA of the Fe-Mn-Cr-Si-C type. The use 
of a base powder pre-alloyed with 0.85% Mo in combination with MA leads to hybrid alloy 
mixtures with high hardness and good hardenability. Purely martensitic homogeneous 
microstructures can be achieved with all hybrid alloy materials using AstaloyCrM as the base 
powder. Materials based on AstaloyCrM show the smallest differences in hardness at cooling 
rates of 3 and 1.5 K.sec-1. 
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ANALÝZA MOŽNOSTI VYUŽITIA UMELEJ INTELIGENCIE PRE 
PREDIKCIU SPOTREBY ELEKTRICKEJ ENERGIE PRI PROCESE 
FRÉZOVANIA SMREKOVÉHO DREVA 
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1Technical university, Department of Manufacturing and Automation Technology (FT), Faculty of 
Technology, Technical university in Zvolen, T. G. Masaryka 24, 960 01, Zvolen, Slovakia, 
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ABSTRACT: The aim of the article is to design and evaluate predictive models that can estimate the energy 
consumption of a milling operation based on predefined technological parameters chosen based on statistical 
results. Experimentally measured data were analysed to examine the relationship between input variables such as 
cutting speed, feed rate, and tool geometry, and the output variable, which is power consumption of machine. 
Several machine learning algorithms were applied and compared, including Artificial Neural Networks, Gaussian 
Process Regression, Decision Trees, Linear Regression, Kernel Regression, and Effective Linear Regression. 
Based on the comparison of accuracy, computational efficiency and their ability to predict the target variable with 
the smallest possible error rate. 

Key words: energy consumption, milling, cutting parameters, artificial intelligence. 

ABSTRAKT: Cieľom článku je navrhnúť a vyhodnotiť predikčné modely umožňujúce odhadnúť spotrebu energie 
pri operácii frézovania na základe vopred definovaných technologických parametrov, ktoré boli zvolené podľa 
predchádzajúcej štatistickej analýzy. Experimentálne namerané dáta boli analyzované s cieľom preskúmať vzťah 
medzi vstupnými premennými – ako sú rezná rýchlosť, posuv nástroja a geometria nástroja – a výstupnou 
premennou, ktorou je príkon obrábacieho stroja. Na predikciu boli aplikované a porovnávané viaceré algoritmy 
strojového učenia vrátane neurónovej siete, regresie pomocou Gaussovských procesov, rozhodovacích stromov, 
lineárnej regresie, Kernel regresie a efektívnej lineárnej regresie. Modely boli vyhodnocované z hľadiska presnosti 
predikcie, výpočtovej efektívnosti a ich schopnosti minimalizovať chybu pri odhade. 

Kľúčové slová: energetická náročnosť, frézovanie, rezné parametre, spotreba elektrickej energie, umelá 
inteligencia 

INTRODUCTION 
In today's age we can’t image living without items that are manufactured from wood, 

there are alternatives, but they are not as plentiful and cost efficient as wood. Wood and wood-
based products are all around us from moment we wake to moment we go to sleep. Between 
raw material and final product is always several steeps, from harvesting resource in our case 
wood which is plentiful and renewable. There is a lot of types of wood, and every material has 
its technical parameters. In this study material used in experiment is spruce wood. Decision on 
which base was material chosen were to availability and price. 

When raw material is transformed to required product, several steps must occur. In our 
case focus will be on woodworking machine. There are several types of machines that can 
transform to required parameters ranging from CNC machine centres that can create required 
shape with specific parameters and surface quality to simple ones like saw cutting planks in 
simple carpentry. Every process has parts that can be slightly improved and analysed. Tools of 
artificial intelligence can offer potential improvements of techniques after rigorous analysis. 
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This analysis can focus on challenges as tool wear, process efficiency, downtime, 
quality control, programming complexity and waste material. 

Currently artificial intelligence offers potential as mentioned in Survey on machine 
learning. 

There are two types of milling process monitoring, direct (offline) and the other one is 
indirect (online) monitoring. The offline monitoring usually uses a fiber optic sensor or charge-
coupled device (CCD) camera, electric resistance, displacement, and acoustic emission, which 
can measure the dimensional changes in cutting tools and machined parts with high accuracy 
(Pasandidehpoor et al. 2025). 

Real opportunity is real-time feedback control, autonomous decision making, 
explainability/transparency of AI in decision making, data acquisition challenges, handling 
variability of materials and scalability. There is also perhaps possibility or combining AI with 
simulation creating digital twins. 

Artificial intelligence as tool that supports manufacturing has significant opportunities 
for overall improvement of production process. In milling process there is several opportunities 
for improvement with combination of CNC machining. These opportunities are ranging from 
creating most cost-efficient tool path, to modifying cutting parameters to conserve energy, with 
keeping required surface quality. That leads me to practical opportunities that artificial 
intelligence could bring to manufacturing such as sensor integration, data collection, model 
development, real time control, optimization of process planning, maintenance, tool 
management and quality control. As mentioned by Hirsch and Friedrich (2025) authors focused 
on study that explores data-driven methods, in particular deep learning, for tool wear prediction. 
In research by Onyegu and Mgbemena (2023) authors focused on selected milling parameters 
(feed, cut depth, speed) that maximize removal rate while keeping tool wear at acceptable level 
in order to reduce tooling costs and reduce downtime on machine. In research by Çakıroğlu et 
al. (2022) authors focused on surface quality and power consumption of milling process using 
Artificial neural networks. Their study focused on practical implications such as reduced energy 
costs in CNC wood manufacturing, improved surface finish consistency and enhanced decision-
making in computer-integrated manufacturing systems. 

The main goal of the article is to verify the possibilities of using artificial intelligence 
in a specific manufacturing operation, namely milling. The intention is to create a predictive 
machine learning model that will be able to estimate the electrical power consumption of the 
machining equipment based on selected technological parameters, such as cutting speed, feed 
rate and tool angle. Such a model will allow predicting the energy intensity of the process 
without the need for direct measurement, which is practical especially in cases where 
measurement is complicated, time-consuming, expensive or otherwise impractical. 

MATERIAL AND METHODS 
Measurement is done on bottom spindle moulder which is a stationary woodworking 

machine designed for precision shaping and profiling of wooden components. During 
operation, the wooden workpiece is guided along the table and brought into contact with the 
rotating cutter, enabling the creation of complex profiles, grooves, rebates, and joint geometries. 
In this process, conventional (up) milling is commonly used, where the cutter rotates against 
the feed direction to ensure greater control, improved surface finish, and reduced risk of tear-
out—especially important when working with softwoods. Machine features a vertically 
mounted spindle located beneath the worktable, onto which various cutter heads can be 
installed. Material that is used during experiment is spruce wood with dimensions of 20 × 100 
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× 70 mm. The material was machined using conventional (up) milling on a bottom spindle 
moulder to ensure precise surface quality and dimensional accuracy. 

The experiment was repeated for all combinations of technological parameters, which 
are listed in Table 1. Each measurement consists of the following steps: 

• replacement of the milling head with the selected tool face geometry, 
• setting of the cutting speed (vc) and feed speed (vf), 
• the course of the milling process, 
• recording of the power input during the entire experiment. 

 
Table 1 Machining Parameters 
Tabuľka 1 Parametre obrábania 

Parameters Values 
Feed speed1 vf [m.min-1] 6, 10, 15 
Cutting speed2) vc [m.s-1] 20, 40, 60 
Rake angle3) γ = 15°, 20° 
Depth of cut4) ap [mm] 1 

1)Posuvná rýchlosť, 2) Rezná rýchlosť, 3)Uhol čela, 4) Hĺbka rezu  
 

To record data on electricity consumption in real time throughout the experiment, a 
measurement system was set up as shown in Fig. 1. The main part is a frequency converter 
connected directly to a three-phase electrical network (phases L1, L2, L3). The output voltage 
from the converter is then fed into a sine filter, which ensures a smooth transfer of energy to 
the bottom spindle moulder, which serves as a machining device (Korčok, 2019). 

 
Fig. 1 Apparatus for measuring cutting power  
Obr. 1 Aparatúra na meranie rezného príkonu 

1 – Frequency converter UNIFREM 400 007 M with sine filter SKY3FSM25 1) 
2 – Three-phase asynchronous motor 2) 
3 – Bottom spindle milling machine SVF 3) 
4 – Personal computer (laptop) 4) 

1) Frekvenčný menič UNIFREM 400 007 M so sínusovým filtrom SKY3FSM25, 2) Trojfázový 
asynchrónny motor, 3) Spodná vretenová frézka SVF, 4) Osobný počítač (notebook) 
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Technical parameters of frequency converter UNIFREM 400 are shown in Table 2. 

Spindle miller technical parameters are shown in Table 3. 
 
Table 2 Technical parameters of frequency converter UNIFREM 400 007 M 
Tabuľka 2 Technické parametre frekvenčného meniča UNIFREM 400 007 M 

M ~ quadratic load1)  
Motor power PNOM 2) [kW] 1,1 
Rated inverter output current for quadratic load INQ3) [A] 3,1 

M ~ constant load 4)  
Motor power PNOM 2) [kW] 0,75 
Rated inverter output current INK60 5) [A] 2,2 
Maximum inverter output current INK60 6) [A] 3,3 
Maximum inverter output current INK2 7) [A] 4,4 
Rated inverter output current ININ 8) [A] 3,1 

1)kvadratická záťaž, 2)Výkon motora PNOM, 3)Nominálny výstupný prúd meniča pre kvadratickú 
záťaž INQ, 4) Konštantná záťaž, 5) Nominálny výstupný prúd meniča INK60, 6)Maximálny. 
výstupný prúd meniča INK60, 7) Maximálny výstupný prúd meniča INK2, 8) Nominálny výstupný 
prúd meniča ININ. 
 

Table 3 Technical parameters of bottom spindle miller 
Tabuľka 3 Technické parametre spodnej vretenovej frézky 

Parameter  Value 
Voltage system 1) [V] 360 / 220  
Power consumption 2) [kW]  4  
Frequency 3) [Hz] 50  
Contact resistance 4) [Ω] 0.03  
Manufacturer 5)  Maschinenfabrik Ferdinand Fromm 
Year of manufacture 6) 1976 

1)Napäťový system, 2)Príkon, 3)Frekvencia, 4)Odpor prívodov, 5)Výrobca, 6)Rok výroby 
 
A typical machine learning algorithm is composed of three main components (Berkeley, 2020): 

1. Decision process: a process of calculation and steps that take data and estimate what 
kind of pattern the algorithm is trying to find. 

2. Error function: a method of measuring the quality of the estimate by comparing it with 
known examples. Whether the decision process proceeded correctly, if not, what the 
impacts of the decision were. 

3. Update or optimization process: the algorithm observes errors and, based on them, 
updates how the decision process reached the decision and improves them in the 
future. 

The implementation of AI in work environments leads to more efficient and cost-effective 
workflows. Together with the accuracy of modern AI, this contributes to the overall 
improvement of performance in the workplace (Duggal 2024). 

Analysing often very large data sets to identify patterns can be time-consuming, 
financially demanding, and tiring for people. AI is simply able to identify significant trends, 
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uncover key insights, and recommend solutions based on processed data, which in many cases 
helps in making informed decisions (Duggal 2024). 

The use of artificial intelligence in manufacturing is diverse and does not only concern 
streamlining production processes and reducing costs, but in addition to these benefits, AI also 
brings other benefits to companies, such as quality control, supply chain management, 
improving customer experience, and forecasting demand (Wuest, 2016). 

The manufacturing industry needs a large logistics centre to ensure the smooth operation 
of the entire production process in logistics or warehouse management. The use of machine 
learning-based solutions helps automate various tasks associated with logistics, which leads to 
higher efficiency and lower costs. The average American business loses approximately 
$170,000 annually due to manual and time-consuming processes such as logistics or 
administrative tasks related to production. Repetitive tasks can be automated using machine 
learning, saving significant amounts of time and money. In addition, machine learning 
algorithms can optimize resource management – for example, Google has managed to reduce 
data centre cooling costs by up to 40% thanks to DeepMind artificial intelligence 
(ITConvergence, 2020). 

Decision tree algorithms are widely used in machining because of their interpretability 
and low computational cost. In milling, they are often employed to predict tool wear or classify 
machining conditions based on features extracted from vibration, acoustic emission, and force 
signals. The model splits data according to critical thresholds, making it straightforward to 
implement in real-time monitoring. For example, a decision tree may identify chatter states or 
tool wear levels using vibration amplitude and spindle speed as decision nodes. Liu et al. (2022) 
demonstrated the effectiveness of decision tree-based models for chatter detection in milling, 
enabling adaptive control and stable cutting conditions (Liu et al., 2022).  

Support Vector Regression is well-suited for modelling nonlinear relationships in 
manufacturing, particularly when data are moderate in size and precision is required. In milling, 
SVR has been applied to predict surface roughness and cutting force variations as a function of 
spindle speed, feed rate, and depth of cut. It can handle complex interactions between process 
parameters and machining outcomes through kernel functions, such as RBF or polynomial 
kernels. Natarajan et al. (2025) used SVR within an ensemble framework to predict surface 
roughness in polymeric machining, showing improved accuracy compared to classical linear 
models (Natarajan et al., 2025). 

Gaussian Process Regression provides not only accurate predictions but also uncertainty 
quantification, which is especially valuable in high-value machining operations. In milling, 
GPR can predict tool wear progression and surface roughness while providing confidence 
intervals, enabling more reliable process planning. Because it captures correlations in data 
without assuming a fixed functional form, GPR is ideal for processes with nonlinear and noisy 
dynamics. Such probabilistic modelling supports decision-making in predictive maintenance 
strategies. Similar methods have been applied in tool condition monitoring to enhance 
reliability in smart manufacturing systems (Liu et al., 2024). 

Ensemble learning methods combine multiple base learners (e.g., decision trees, SVR 
models) to create a more robust and accurate predictive model. In milling, ensemble algorithms 
such as Random Forest or Gradient Boosting have been successfully applied to predict surface 
roughness, detect chatter, and monitor tool wear under varying machining conditions. Wang et 
al. (2024) proposed an ensemble feature fusion model for tool condition monitoring, achieving 
high accuracy and robustness compared to single-model approaches (Wang et al., 2024). 
Ensemble models are particularly advantageous for handling noisy industrial sensor data. 

Artificial Neural Networks have demonstrated excellent capability in capturing complex 
nonlinear relationships in milling processes. By processing multivariate sensor data (e.g., 
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vibration, cutting forces, temperature, acoustic emission), ANNs can predict tool wear, estimate 
surface roughness, and optimize machining parameters in real time. Hung et al. (2020) 
compared ANN with classical regression models for predicting surface roughness and found 
that ANN provided superior accuracy and adaptability across different cutting conditions (Hung 
et al., 2020). Deep learning extensions further enable adaptive control and fault detection in 
automated milling systems. 

Linear regression (LR) remains one of the most accessible and interpretable approaches 
for modelling machining processes, especially under stable conditions. In milling, LR has been 
used for quick estimation of surface roughness or cutting force behaviour when relationships 
between inputs and outputs are approximately linear. It serves as a baseline model for process 
monitoring and is easy to implement directly on CNC systems for real-time feedback. Hung et 
al. (2020) demonstrated that while linear regression is less accurate than ANN, it can still 
provide fast and practical predictions for certain machining regimes (Hung et al., 2020). 

Kernel regression techniques, including RBF and polynomial kernels, enable the 
extension of linear regression to capture nonlinear process dynamics without the complexity of 
deep learning. In milling, KFR has been applied to predict dimensional accuracy, chatter onset, 
and surface roughness, particularly when interactions between parameters are smooth but 
nonlinear. Compared to SVR, kernel regression offers simpler tuning and good interpretability. 
Natarajan et al. (2025) demonstrated how kernel-based models enhance surface finish 
prediction in polymeric machining environments (Natarajan et al., 2025). 

Efficient Linear Regression is a computationally optimized version of classical linear 
models, suitable for real-time machining control. Its low memory footprint and high-speed 
computation make it ideal for embedded applications such as adaptive feed rate control or on-
machine tool wear compensation. While not as flexible as nonlinear models, ELR provides 
reliable and fast parameter estimation. This is particularly valuable in closed-loop control 
systems where machining forces must be regulated dynamically. Müller et al. (2023) discussed 
the use of efficient linear models in adaptive machining strategies for Industry 4.0 production 
cells (Müller et al., 2023). 

RESULTS & DISCUSSION 
Measured data during idle time (power during idle Pp0) and time with which tool is 

under load (power during cutting Pp) can be seen in the Fig. 2. This data from experiment were 
sorted to two subgroups and that is Pp0 and Pp. Subsequently, the average value of the Pp0 group 
was calculated and subtracted from each individual Pp measurement. This procedure yielded Pc 
(cutting power), which represents the output variable used in further data processing and 
analysis. 

The same method was applied to all measurements obtained under different input 
parameter conditions. The processed data were then compiled into a comprehensive table, 
where each Pc value was associated with the corresponding machining parameters. 



 

ACTA FACULTATIS TECHNICAE, XXX, 2025 (2): 27–40                                                                   33 
 

                    

 
Fig. 2 Course of measured power consumption during one experiment 

Obr. 2 Priebeh meraného príkonu počas jedného experimentu  
 

Next part was statistical evaluation of data that was acquired during experiment. 
Statistical evaluation was done in program statistical from company TIBCO. After descriptive 
statistics are used to describe and summarize the characteristics of a dataset. Descriptive statistic 
is shown in Table 4. Dataset is then analysed using ANOVA and Duncan’s test to find which 
factors differ between data and affect power consumption. Plot of means and confidence 
intervals from measured data are shown in Fig. 3. 

 
Table 4 Descriptive statistics 
Tabuľka 4 Popisná štatistická analýza 

Variable 
Descriptive Statistics 

Valid N Mean Minimum Maximum Std.Dev. 

Angle γ [°] 900 17,50 15,00 20,00 2,50 

Cutting speed vc [m.s-1] 900 40,00 20,00 60,00 16,34 

Feed speed vf [m.min-1] 900 10,33 6,00 15,00 3,68 
Power consumption P  900 125,85 37,93 232,75 47,92 
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Fig. 3 Analysis of variance of measured power consumption 

Obr. 3 Analýza rozptylu nameraných hodnôt príkonu 
 

After initial processing and cleaning of the measured data, the data were imported into 
the MATLAB environment, specifically into the Regression Learner application. In this 
application, the adjusted measurement data were entered as input variables, while the target 
variable was the power consumption of machine during the technological operation. Next step 
is training all available regression models.Table  Table 5 contains model name and model 
accuracy. Graphical interpretation is showed in Fig. 4. 

 
Table 5 Models and their accuracy 
Tabuľka 5 Modely a ich presnosť 

Model 
No. Model Name Accuracy (R²) 

1 Artificial Neural Network 1) 0.95 

2 Ensemble 2) 0.95 
3 Gaussian Process Regression 3) 0.95 

4 Support Vector Regression 4) 0.95 

5 Decision Tree 5) 0.95 
6 Linear regression 6) 0.93 

7 Kernel regression 7) 0.93 

8 Effective linear regression 8) 0.88 
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1)Umelá neurónová sieť, 2)Kombinácia modelov, 3)Regresia pomocou Gaussových 
procesov, 4)Regresia pomocou metódy podporných vektorov, 5)Rozhodovací strom, 
6)Lineárna regresia, 7)Regresia s použitím jadrových (Kernelových) funkcií, 8)Efektívna 
lineárna regresia 
 

 
Fig. 4Prediction models with highest accuracy 

Obr. 4 Predikčné modely s najväčšou presnosťou 
 

To better illustrate the performance of the tested regression models, two representative 
cases were selected. The Fig. 5 shows the most accurate model, and the Fig. 6 shows the least 
accurate model based on the coefficient of determination (R²) value and a visual comparison of 
predicted values with actual values. 

These figures show the differences between predicted and actual values during the 
validation phase. In the case of the most accurate model, the values are distributed close to the 
ideal diagonal, which indicates a high degree of agreement and reliable prediction. On the 
contrary, significant deviations are observed in the worst model. 

Such a comparison allows to point out the differences in the performance of the models 
in a simple and illustrative way and to justify the choice of the most suitable solution for 
practical use in predicting power consumption in milling. 
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Fig. 5 Predicted and actual values comparison chart in most accurate model 

Obr. 5 Porovnanie predikovaných a skutočných hodnôt v najpresnejšom modeli 
 

 
Fig. 6 Predicted and actual values comparison chart least accurate model 

Obr. 6 Porovnanie predikovaných a skutočných hodnôt najmenej presný model 
 

The selected models were further compared based on their ability to predict the target 
variable with the smallest possible error rate. The main indicator of accuracy was the root mean 
square error (RMSE). This metric allows an objective assessment of how close the predicted 
values are to the actual measured data. Error rate is shown in Table 6. Sorted version of graph 
is shown in Fig. 7. 
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Table 6 Root mean square error of models 
Tabuľka 6 Chybovosť modelov 

Model 
No. Model Name Error rate 

(RMSE) [W] 
1 Artificial Neural Network 1) 10,20 

2 Ensemble 2) 10,19 

3 Gaussian Process Regression 3) 10,20 
4 Support Vector Regression 4) 10,27 
5 Decision Tree 5) 10,20 
6 Linear regression 6) 12,92 

7 Kernel regression 7) 13,02 

8 Effective linear regression 8) 16,89 
1)Umelá neurónová sieť, 2)Kombinácia modelov, 3)Regresia pomocou Gaussových 
procesov, 4)Regresia pomocou metódy podporných vektorov, 5)Rozhodovací strom, 
6)Lineárna regresia, 7)Regresia s použitím jadrových (Kernelových) funkcií, 8)Efektívna 
lineárna regresia 

 
Fig. 7 Error rate of predictive models 

Obr. 7 Chybovosť predikčných modelov 
 

In addition to prediction accuracy and error rate, the time required to train a regression 
model is also an important factor in choosing a suitable regression model. This data is especially 
important in the practical application of models in production processes, where it is necessary 
to react quickly to changes in input parameters or data updates. Individual models were also 
compared in terms of computational complexity, specifically based on the time required to train 
them in the MATLAB environment. Time required to train in MATLAB environment is shown 
in Table 7. Sorted version of graph is shown in Fig. 8. 
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Table 7 Time of training selected models 
Tabuľka 7 Čas trénovania modelov 

Model No. Model Name Time [s] 

1 Artificial Neural Network 1) 2,93 

2 Ensemble 2) 3,06 

3 Gaussian Process Regression 3) 9,25 

4 Support Vector Regression 4) 3,09 

5 Decision Tree 5) 2,64 

6 Linear regression 6) 5,35 

7 Kernel regression 7) 7,49 

8 Effective linear regression 8) 1,08 
1)Umelá neurónová sieť, 2)Kombinácia modelov, 3)Regresia pomocou Gaussových 
procesov, 4)Regresia pomocou metódy podporných vektorov, 5)Rozhodovací strom, 
6)Lineárna regresia, 7)Regresia s použitím jadrových (Kernelových) funkcií, 8)Efektívna 
lineárna regresia 

 
Fig. 8 Time required to train model 

Obr. 8 Čas trénovania modelov 
 

The goal is design and evaluation selected types of algorithms and choosing the most 
suitable one. The algorithm is chosen based on accuracy of algorithm, time required for training 
of data and predicted rate of error compared to data acquired during experiment. Based on Fig. 
Fig. Fig.  andFig. , every algorithm has its strengths and weaknesses. For example, the simple 
linear regression model required the least amount of computing time, yet did not deliver the 
highest accuracy. This observation aligns with the established literature: while linear regression 
remains fast and interpretable, its flexibility and ultimate predictive performance are often 
limited compared to non-linear or ensemble approaches. As noted by Gzar et al. (2022) or 
Kadnár et al. (2023), linear regression exhibited low computational complexity, but also 
relatively lower accuracy compared to more complex models such as random forest or neural 
networks. Depending on size of analysed sample, computing time can be critical factor, 
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whereby it does not play significant role on samples of smaller size. Algorithms Artificial 
Neural Network, Ensemble, Gaussian Process Regression, Support Vector Regression and 
Decision Tree have highest predicted accuracy but differ in error rate and computational time. 
The choice of a particular algorithm is also influenced by the amount of data needed to 
supplement its learning and the need for its implementation in real time in industrial operation. 

For practical implementation of real time decision making by algorithms several steps 
need to be taken care of, such as training data, evaluation and decision-making process. In case 
of decision tree requirement condition has to be chosen carefully, when choice is implemented 
and what impact it implements to overall process. With data that’s that is evaluated and trained 
based on input and output parameters process can be simplified to elementary steps that 
algorithms can handle. It could be used in conjunction with hybrid models that offer alternative 
tool paths or spindle speeds. It could be simply used to check power consumption and notify 
algorithm or personnel in case spike occurs and or offer potential solutions for issue based on 
programming for personnel overseeing processes. 

CONCLUSION 
Based on the comparison of all tested regression models in terms of prediction accuracy, 

error rate and computational complexity, the decision tree was selected as the most suitable 
model. This model achieved high accuracy, low average error and very short training time in 
comparison with other models. In addition, the decision tree has the advantage of simplicity of 
interpretation, which is practical when implemented in a real production environment. For this 
reason, the decision tree was selected as the most suitable model for predicting energy 
consumption in milling, based on technological parameters. 
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