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KONSTRUKCIA A  EXPERIMENTALNE HODNOTENIE
ELEKTRICKYCH PARAMETROV MALEHO VETERNEHO
GENERATORA

Peter Koleda, Peter HadZzega

Department of Manufacturing and Automation Technology, Faculty of Technology, Technical
University in Zvolen, T. G. Masaryka 54, 960 01 Zvolen, Slovakia, peter.koleda@tuzvo.sk

ABSTRACT: This paper presents the design and experimental verification of a small wind generator employing
a levitation-based rotor support. The mechanical and electrical components of the system are described, with power
generation based on the principle of electromagnetic induction — specifically, the induction of voltage in a
conductor resulting from temporal changes in the magnetic field. The magnetic bearing of the rotor enables a
significant reduction in mechanical friction, thereby improving the overall system efficiency. Experimental results
confirm the agreement between the measured and theoretically calculated frequencies of the generated voltage,
derived from the rotor speed and the number of magnetic poles. The study also includes an analysis of the induced
voltage magnitude in individual stator windings. Finally, potential optimization approaches and future research
directions for small wind generators with magnetic bearing systems are discussed.

Key words: renewable resources, wind generator, magnetic bearing system, induced voltage

ABSTRAKT: Tento ¢lanok prezentuje navrh a experimentalne overenie funkénosti malého veterného generatora
vyuzivajuceho levitacny princip uloZenia rotora. Opisané su konstruk¢né rieSenia mechanickej a elektrickej Casti
zariadenia, pricom vyroba elektrickej energie je zalozena na principe elektromagnetickej indukcie, teda na indukcii
napétia vo vodi¢i v dosledku ¢asovej zmeny magnetického pol'a. Magnetické uloZenie rotora umoziuje vyrazné
znizenie mechanického trenia a tym prispieva k zvy$eniu G¢innosti systému. Experimentalne vysledky potvrdzuju
zhodu medzi nameranou a teoreticky vypocitanou frekvenciou generovaného napdtia, odvodenou z otacok rotora
a poCtu magnetickych polov. Stcastou €Elanku je aj analyza velkosti indukovaného napétia na jednotlivych
statorovych vinutiach. V zavere su diskutované moznosti optimalizacie konStrukcie a smerovanie d’alsicho
vyskumu v oblasti malych veternych generatorov s magnetickym ulozenim.

KPiacéové slova: obnovitelné zdroje, veterny generator, magnetické uloZenie, indukované napétie

INTRODUCTION

Decentralized electricity production through small wind turbines is a key element of
local energy, island systems and strengthening the energy resilience of communities. According
to the IEC 61400 family of standards, “small” turbines are generally considered to be those with
a rotor area of less than 200 m? and a nominal voltage of up to 1,000 V AC or 1,500 V DC. The
standard also specifies load classes and safety requirements for the design, installation and
operation of these devices (International Electrotechnical Commission [IEC], 2020, 2019,
2022).

Compared to large onshore or offshore wind farms, small wind turbines are designed
for local use of wind resources, often in rural environments with open wind flow, but also in
built-up environments (buildings, roofs, masts). The key technical limitations are low to
medium wind speeds and high turbulence, which reduce power utilization and increase fatigue
loads. Recent eddy current simulations and experiments confirm that the breakdown of speed
and turbulence structures at start-up fundamentally affects the power curve and dynamic
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stresses; therefore, site selection and aerodynamic optimization are critical even for small
generators (Jézéquel et al., 2024, Abkar and Porté-Agel 2015).

In terms of rotor typology, the principles of horizontal-axis wind turbines (HAWT) and
vertical-axis wind turbines (VAWT) are applied in small wind simulators. In urban and
suburban conditions, VAWTs are often investigated for their better resistance to turbulent and
changing flows. Current studies show that a certain level of turbulence can even slightly
improve the average power output and promote self-starting, although the effects are limited
and sensitive to the geometry and distances between turbines (Yang et al., 2024, Al-Rawajfeh
and Gooma 2023). A broader review of micro- to small-scale wind technologies and their
integration into buildings points to the potential, but also to persistent limits in wind field
estimation, interactions with buildings and capacity factors (Calautit and Johnstone 2023).

The theoretical maximum efficiency for axial turbines is given by the Betz limit (~59%)
(Betz 1966, Arif 2019); real aecrodynamic and electro-mechanical losses lead to a lower actual
ratio of captured energy. The capacity factor for low winds is highly dependent on local
conditions; for onshore turbines, a wide dispersion is generally reported in the literature (about
9 — 53% depending on location and design), while in built-up environments at low winds the
capacity tends to be at the lower end of this range due to low speeds and increased turbulence
(Center for Sustainable Systems 2024).

The aim of the article is to design a small experimental wind generator based on the
levitation principle and verify its functionality by measuring the induced current in the stator
winding.

MATERIAL AND METHODS

The experimental wind generator converts the kinetic energy of the air flow into
electrical energy by using electromagnetic induction in the stator coils. Its structural assembly
was designed in SolidWorks and is shown in Fig. 1. The functional model is shown in Fig. 2.

@06000000

Fig. 1 Assembly of wind generator
Obr.1 Zostava veterného generatora
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1 — centring part, 2 — stator with 6 coils, 3 — rotor with 8 neodymium magnets M1 with
dimensions of 30 x 10 x 2 mm, 4 — circular neodymium magnets M2 with dimensions
of @ 32 x 18 x 4 mm, 5 — shaft, 6 — weight, 7 — case, 8 — propeller, 9 — frame from
aluminium profile 40 x 40 mm, 10 — Y-shaped holder of magnets M3, 11 — circular
neodymium magnets M3 with dimensions of @ 20 x 8 X 5 mm, 12 — aluminium L
profile 40 x 40 mm

Fig. 2 Wind generator
Obr. 2 Veterny generator

The device consists of a rotor (3) containing eight neodymium magnets M1 type N42
with dimensions of 30 x 10 x 2 mm, with a pull-out force of approximately 2.6 kg per magnet.
These magnets are evenly distributed in a circle, creating a symmetrical magnetic field
necessary for inducing voltage in the stator coils (2).

Fig. 3 Detail of rotor with eight permanent magnets M1
Obr. 3 Detail rotora s 6smimi permanentnymi magnetmi M1
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The stator part is connected to the frame with screws and consists of six copper coils
(Fig. 4), each of which contains 25 turns of coil wire @ 0.50 mm (cross-section 0.196 mm?).
The coils are positioned so that the magnetic lines of force of rotating magnet periodically
intersect the coils, which leads to the induction of an electric current according to Faraday's
law.

Fig. 4 Detail of stator with six copper coils
Obr. 4 Detail statora so Siestimi medenymi cievkami

One of the design elements of the generator is the use of a levitation system (Fig. 5),
which minimize friction. The rotor shaft is equipped with two groups of 10 circular neodymium
magnets M2 (type N38) with dimensions of @ 32 x 18 mm and a height of 4 mm, with a tear-
off force of approximately 7.5 kg. These are mounted on supporting neodymium magnets M3
(type N38) in the number of 6 x 8 pcs and dimensions @ 20 x 8 mm, height 5 mm, with a tear-
off force of approximately 6.3 kg. By magnetic repulsion, the rotor shaft floats between these
rows of magnets, which allows smooth rotation almost without mechanical contact. The rotor
shaft is also driven by a propeller that uses air flow as a renewable energy source.
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Fig. 5 Detail of magnetic bearing of generator
Obr. 5 Detail magnetického loziska generatora

Another element of the magnetic guide is the centring part (Fig. 6) fitted on the inside
with a neodymium magnet M4 @ 10 x 10 mm, type N42, with a tear-off force of approximately
3.9 kg, which stabilizes the shaft tip in the desired position. The part is also shaped with a radius
R150, which ensures automatic centring of the shaft during its operation (rotation). The shaft
tip has a tip turned to a radius R6. The magnetic guide created in this way not only keeps the
rotor in the axis but also maintains low friction.
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Fig. 6 Cross section of the centering part with magnet @ 10 x 10 mm
Obr. 6 Prierez strediacim dielom s magnetom @ 10 x 10 mm

The generator construction was designed with an emphasis on simplicity, modularity
and low weight. The generator frame was made of 40 X 40 mm aluminium structural profiles,
which ensure sufficient strength while allowing flexibility in assembling, expanding or
modifying the generator set.

All key structural elements of the generator, including the rotor, stator, and Y-shaped
magnet holders, were designed in 3D SolidWorks software. These parts were then
manufactured on a powder 3D printer Formlabs fuse 1, which is designed for precise and
efficient printing of functional parts from plastic powder (SLS technology), enabling high levels
of accuracy, individual shape customization, and rapid prototyping.

The individual parts, such as the stator base, magnet holders and support brackets, were
then firmly attached to the frame made of aluminium profiles using screw connections. This
method of attachment ensures sufficient stability during operation, while also facilitating the
disassembly or replacement of individual components during system testing and tuning.

The rotor part with permanent magnets and pressed-in bushings was firmly mounted on
the generator shaft. This ensured mechanical stability, alignment and smooth movement during
rotation, which is essential for the efficient conversion of mechanical into electrical energy
through electromagnetic induction.

Theoretical calculation of induced voltage for the designed wind generator
In the plane of a sinusoidal waveform, according to Faraday's law, the amplitude of the
voltage generated on the coil when the magnetic flux changes is:

do
Epeak = NE [V], (1
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where @ is magnetic flux (V.s), N is number of turns.
For harmonic signal with frequency f and angular frequency w = 27 f it can be written:

Epeak = N ABw [V], 2

where A4 [m?] is coil conductor cross-section, B [T] is magnetic induction.
Used parameters for computation of generated voltage in one coil are in table 1.

Table 1 Parameters of computation for one generator coil
Tabul’ka 1 Parametre vypoctu pre jednu cievku generatora

Parameter Value
Number of threads N [-] 25
Coil conductor cross-section A [m?] 2,56 .10°
Assumed induction B in the working gap for a 0,7

magnet of type N42 [T]

Revolutions n [RPM] 400

Number of coil pairs p [-] 4

Electric frequency of signal can be computed by term:

fe=p X fm= 4 X 6,667 = 26,6 Hz, 3)
where, p are pole pairs and f,,, [Hz] is mechanical frequency of rotor rotations:
fn=i= % = 6,667 Hz. 4)
Angular frequency of rotor can be computed as:

w = 2nf, ~ 167,6 rad.s™ 1. (%)
By substitution into (2), the amplitude of inducted voltage in winding is:

Epeak =25 X 2,56 X 107° x 0,7 X 167,6 ~ 0,165V (6)

and RMS value:

_ Epeak_ 0,165

Erms = 25~ 2~ 0117V, (7
RESULTS AND DISCUSSION

To verify the functionality of the assembled generator, a workstation was assembled as
shown in Fig. 7. A turbocharger with a Hitachi SJ200 frequency converter was used to spin the
rotor using a stable air flow, due to the possibility of setting the required speed. Measurements
were made at the output of one phase of the stator using a two-channel oscilloscope Tektronix
TDS 2002B.
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. tachometer

Fig. 7 Laboratory equipment with generator and oscilloscope
Obr. 7 Laboratérne pracovisko s generatorom a osciloskopom

Fig. 8 shows the voltage waveform at a rotor speed of 400 min"!. The measurement
parameters read from the measured waveform are summarized in Table 2.
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Fig. 8 The result of measuring the generator voltage on an oscilloscope Tektronix TDS 2002B
(CH1: 100 mV, Timebase: 10 ms)
Obr. 8 Vysledok merania napétia generatora na osciloskope Tektronix TDS 2002B
(CH1: 100 mV, ¢asova zakladna: 10 ms)
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Table 2 Parameters of experimental measurement
Tab. 2 Parametre experimentdlneho merania

Parameter Value

Mechanical revolutions 400 min-!

Number of coil pairs 8 poles (4 pairs)

Number of stator coils 6 coils

Vertical scale 100 mV

Horizontal scale 10 ms

Peak voltage + 150 mV

Signal shape Sinusoidal-pulsed with gentle
overshoot

According to Faraday's law, the amplitude of the induced voltage Epcar is expressed by
the equation (2) and by substituting it into the equation (6), its value is 0.165 V and the RMS
value (7) is 0.117 V. Fig. 18 shows the measured waveforms and values, which confirm that
Epear 1s approximately 0.14 —0.16 V and Eysis 0.10 — 0.11 V. The slight deviation between the
expected and measured voltage from the oscilloscope measurement can be caused by the gap
between the rotor and stator of the generator where the value of magnetic induction B=0.7 T
is probably smaller.

The mechanical frequency of rotation is calculated as:

__ 400min—1

fm o ~ 6,66 Hz (8)

and in combination with 4 electric pairs, it produces voltage with frequency
fo=fm X p = 666x4=26,66Hz, 9
what is a periodic cycle ~ 37,7 ms (= 3,8 div at 10 ms/div).

If we consider that one "transition" between positive and negative peaks (half-period)
lasts = 20 ms, then it can be calculated:

L=l —50Hz (10)

T 0,02s

frans =

Measured mechanical frequency of rotor rotation is
fmech = fm X 8 = 6,66 X 8 =53,28 Hz. (11)

The difference between the theoretical frequency 50 Hz and the measured 53.28 Hz is
caused by the inaccuracy of the oscilloscope time base reading and the rotor speed fluctuations.
For a complete AC voltage cycle (full period) then:

firans 53,28
fcycle = tT =~ T = 26,64 HZ, (12)

where:

fm 1s mechanical frequency of rotor revolutions [Hz], f; is electric frequency of induced
voltage [Hz], p is number of coil pairs, T is half period [s], fi;qns 1S frequency of transition
between positive and negative peak voltage [Hz], fcyce is frequency of full period [Hz].

The shape of the signal course shows:
1. Rapid voltage rise as the pole passes through the centre of the coil.
2. Oscillatory reverberation when crossing zero coupling — a consequence of the
resonance of the winding system and parasitic capacitances.
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3. Symmetrical positive and negative maxima, which confirms the correct balance
of the magnetic field and the correspondence of the revolutions with the
theoretical design.

These results confirm that the generator design with eight magnets on the rotor and six
coils on the stator delivers a stable AC signal with a spectrum suitable for low-speed wind
applications.

CONCLUSION

A model of a wind generator was designed and manufactured, the main elements of
which are a rotor with eight neodymium magnets, a stator with six copper coils and magnetic
bearings. These components enable contactless and almost lossless transfer of mechanical
energy to electrical energy, while the resulting alternating current can be further analysed using
the designed laboratory measuring station.

Testing of the generator demonstrated its functionality and confirmed the validity of the
physical assumptions based on Faraday's law of electromagnetic induction. Measurements
showed that at a rotor speed of 400 min™' (= 6.66 Hz) the generator produced an average output
voltage with an amplitude of £150 mV, which differs only minimally from the theoretical
calculation of 165 mV, and an electrical frequency of approximately 26.5 Hz, which
corresponds to the theoretical calculation for four electrical pairs of poles (8 polarity transitions
per revolution). The measured half-cycle transitions lasted approximately 20 ms (= 53 Hz), with
a negligible deviation from the calculated 50 Hz caused by the inaccuracy of the time base
reading and speed fluctuations.

The identified technical shortcomings, such as the limited stabilization angle of the rotor
or the absence of directional turning according to the wind, provide possibilities for further
development and optimization of the device. The proposed solutions may contribute to the
creation of an efficient low-cost system for generating electricity for remote areas in the future.
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ABSTRACT: The article reviews the possibilities of introducing alloying elements into the material formed by
powder metallurgy, in order to adjust the alloying element content. There are several methods in powder
metallurgy (PM) and each alloying method has its advantages and disadvantages. Master alloys (MA), powders
with a high content of typically several alloying elements, can be added in small amounts to the base powder,
especially to introduce oxygen-sensitive elements such as Cr, Mn and Si. In addition, Master alloys can be designed
to form a liquid phase during the sintering process. This will ensure an improved distribution of the alloying
elements in the material and thus accelerate homogenization. In this study, such MAs were combined with pre-
alloyed Cr-Mo base powders to form hybrid alloy mixtures with the aim of improving the hardenability of the
material during sinterhardening. The hybrid alloys were compared with mixtures of MA and pure iron as a
reference material. The hardenability during sinterhardening of all materials was determined by creating
Continuous Cooling Transformation (CCT) diagrams recorded with different cooling rates.

Key words: sinterhardening, sintering, prealloyed material, master alloy (MA), cooling rate, CCT diagram

ABSTRAKT: Clanok sa zaobera prehladom moznosti zavadzania legujticich prvkov do materialu, vytvoreného
praskovou metalugiou, s cielom upravit’ obsah legujtcich prvkov. V praskovej metalurgii (PM) existuje niekol'’ko
sposobov a kazdy spdsob legovania ma svoje vyhody anevyhody. Master alloys (MA), prasky s vysokym
obsahom typicky niekolkych legujucich prvkov sa mozu pridavat’ v malych mnozstvach do zakladného prasku,
najmi na zavedenie prvkov citlivych na kyslik, ako su Cr, Mn a Si. Okrem toho moze byt’ Master alloys navrhnuté
tak, aby sa pocas procesu spekania vytvorila kvapalna faza. To zabezpeci zlepSenie rozlozenia legujucich prvkov
v materiali a urychlili sa tak homogenizacia. V tejto stadii boli takéto MA kombinované s predlegovanymi
zakladnymi praskami Cr-Mo za tcelom vytvorenia hybridnych legovanych zmesi s cielom zlepsit’ kalitenost’
materidlu pocas sinterhardeningu. Hybridné zliatiny boli porovnavané so zmesami MA a Cistého zeleza ako
referen¢ného materialu. Kalitelnost’ pocas sinterhardeningu vs$etkych materidlov bola stanovena vytvorenim
Continuous Cooling Transformation (CCT) diagramov zaznamenanych s roznymi rychlostami chladenia.

KPicové slova: sinterhardening, spekanie, predlegovany material, master alloy (MA), rychlost’ chladenia, CCT
diagram

INTRODUCTION

Industrial trends over the past decade have significantly increased the demands on mass
production of parts, especially in the automotive industry. Cost reduction, high quality
standards for millions of manufactured parts, such as high precision, mechanical properties,
environmental requirements have contributed to the accelerated development of powder
metallurgy. For the further expansion of PM into new industrial areas and applications,
materials with improved properties are needed. One such method is the sinterhardening process.
The sinterhardening process significantly simplifies the production of parts, as sintering and
hardening are integrated into one cycle. This solution achieves the controlled formation of a
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martensitic structure that occurs during cooling after sintering. As a result, hardness and
mechanical properties are improved. The process uses special sintering furnaces in which a
suitably designed controlled cooling zone is applied. This eliminates the need for a separate
thermomechanical hardening process, eliminating the need to design additional operations and
minimizing costs and production time (Engstrom, et al. 2020) (Kalss, et al. 2022).

Achieving high dimensional accuracy of components is another fundamental advantage
of sinterhardening. Since the entire thermal transformation occurs within a single operation, the
risk of thermal deformation and subsequent distortion of the part is significantly reduced. This
accuracy is especially valued in areas where tolerances are crucial — for example, in the
automotive, aerospace or military industries. In addition, automated process integration ensures
consistency of the resulting properties of the parts, which is important from the point of view
of the quality and reliability of the final products (GéabriSova, et al. 2019).

The energy efficiency of sinterhardening is another significant benefit. Compared to
traditional methods, where separate heat treatments (such as superheating, rapid cooling,
washing and subsequent tempering) are required, sinterhardening can reduce energy
consumption by up to 60 %. Manipulating the temperature profile directly during sintering not
only reduces energy consumption, but also the need for additional processing of parts, which
also reduces operating costs. This environmentally friendly approach is also beneficial for
manufacturers striving for more sustainable production (Krauss, 2015) (Kozovy, et al. 2023).

The main limitation is the low cooling rate achieved during sinterhardening. In current
industrial furnaces, cooling rates of 2-5 K.sec'! can be achieved. In addition, as shown by
(Bocchini, 2002), the surface to volume ratio also plays an important role, since the heat transfer
between the part and the atmosphere is a factor determining the cooling rate.

To compensate for the slow cooling compared to oil quenching, the alloying system
must be adjusted accordingly, requiring a higher content of alloying elements. Special PM steel
grades have been developed for sintering, for example based on pre-alloyed Fe-Mo powder
with diffusion-bonded Cu or Cu + Ni (Engstrom, et al. 2002) (Karamchedu, et al. 2014).

These alloying elements are often used in PM because of their low affinity for oxygen.
Therefore, any oxides in the pressings can be easily reduced during sintering and the risk of
oxygen capture from the sintering atmosphere is also minimal. However, these elements are
expensive and Ni is classified as carcinogenic, as some result elements such as Cr are
increasingly considered advantageous, and Cr and Cr-Mo overalloyed powders are now
commercially available at a reasonable price (Berg, Maroli, 2002). These powders have more
precise requirements regarding the chemical composition and quality of the sintering
atmosphere, but this is now manageable and it has been shown that this class of materials is
also suitable for sintering, at least if the desired result is a martensitic structure. Carbon control
is also essential for sintered steels and is more complex than for metallic steels, especially for
sintered steels alloyed with elements with a high affinity for oxygen, such as Cr, Mn and Si,
which makes carbon loss during sintering a key issue. This also applies to high-temperature
sintering, when deoxidation is greater, but at the cost of higher carbon loss (Danninger, Giert,
2001).

Unlike metal parts, in PM, not only the choice of alloying elements but also the alloying
method is a parameter that affects the properties of the final material. One way to add several
alloying elements is to admix MA. MA is a powder with a high alloying element content, which
usually contains several elements combined in one powder. It is a good way to supplement
oxygen-sensitive elements such as Cr, Mn and Si. In addition, MA can be designed to form a
liquid phase during the sintering process to improve the distribution of alloying elements in the
material and to accelerate homogenization. Pre-alloyed powders show a homogeneous
distribution of alloying elements, but due to solution hardening, the powders are harder and
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therefore less compactable than pure elemental powders of each element (Kalss, 2007)
(Mardan, M., Blais 2016). It has proven difficult to sinterharden steels from most prealloyed
powders under standard conditions without the addition of additional alloying elements, except
for powders with relatively high alloying element content, which multiplies the cost and the
problem of pressing (Hoganas, 2017) Geroldinger 2021).

By implementing new automation techniques, such as high-pressure water atomization
of powder, it is now possible to produce MA powders containing Fe, Si, C, Cr and Mn with low
oxygen content (De oro Calderon, 2019) (Geroldinger, 2019).

MATERIAL AND METHODS

A discussion about the efficiency and performance possibilities of modern metal
manufacturing is incomplete without the concept of sintering in powder metallurgy.
Conventional sintering processes are the bread and butter of improving a part with PM. This
process heats the compacted part to fuse the loosely bonded particles for improved strength and
hardness. After sintering, the powder metal part is often heat treated by reheating to permit
quenching and tempering. This further increases the hardness and strength of the compacted
component (GabrisSova, et al. 2019). One advantage of powder metallurgy is the ability to sinter
the part and then, thanks to controlled cooling, create a wide variety of strength and hardness
combinations. At one end of this range is very slow cooling to create a soft magnetic part; the
other extreme is effectively atmosphere quenching the part to form a martensitic structure with
the same hardness as quenching - but without the additional processing (Knaislova, et al. 2017).

Out of several metal hardening process types, sinter hardening stands out. It combines
the benefits of sintering and hardening into one operation. Secondary operations are minimized
and greater dimensional accuracy is achieved.

Figure 1a shows characteristics of conventional sintering. Conventional sintering has
greater flexibility in material selection, need to have secondary hardening operation (if
required), potential of larger distortion due to heat treatment, ideal for DC magnetic properties.

CONVENTIONALSINTERING

Compaction of Secondary Operations

Sintering of
premixed - compacted PM ‘ Machining, heat

powder part, slow-cooled treating, etc.

a,

SINTERHARDENING

Compaction Sintering including Tempering if required,
of Premixed ‘ Accelerated cooling of - No Additional
Powder PM Part Finishing Operations
b/
Figure 1 Conventional sintering processes (a,); sintering with the inclusion of heat treatment
(b,)

Obrazok 1 Postupy konvenéného spekania (a,); spekanie so zaradenim tepelného spracovania
- sinterhardening (b,)
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The Figure 1b shows characteristics of sinterhardening. The sinter hardening has heat
treatment incorporated into sintering circle, reduced processing steps, greater dimensional
precision, reduced material flexibility heat treatment incorporated into sintering circle, reduced
processing steps, greater dimensional precision, reduced material flexibility.

Conventional heat treatment (reheating and quenching) forms martensite within the part
that has high hardness but is quite brittle. Tempering lowers the hardness slightly but
dramatically increases the strength. This has been the tried-and-true method for hardening in
both PM and conventional parts manufacturing. However, using special sintering furnaces
coupled with engineered powder materials creates the opportunity to eliminate the reheating
step and merge it into the sintering step. This gives the same transformation along with the
advantages of strength and hardness.

Sinterhardening allows for improved mechanical properties of parts. The resulting
martensitic structure provides a combination of high hardness and wear resistance, which is
especially important for components exposed to high mechanical stress. In addition, the
optimized process ensures minimal variability of properties between individual products, which
significantly contributes to the overall reliability and performance of the products.

The article presents the results of sinterhardening of materials ASC100.29,
Astaloy85Mo, AstaloyCrA, AstaloyCrM and Astaloy CrS with MA addition. Alloying
elements were measured using laser ablation mass spectrometry and inductively coupled
plasma. Carbon content was determined by C-LECO measurements. For the measurement, the
standard for steel pins was 501-679, with a content of 0.799+0.011 wt. % carbon. The powders
were mixed in a Turbula mixer for 10 minutes according to the standard industrial procedure.
Samples with dimensions of 10 x 7 x 4 mm were pressed at a pressure of 600 MPa and Multical
calibration oil was used. The pressings were isothermally sintered at T=1 300 °C for 1 hour.
under defined conditions in an electrically heated furnace with a gas-tight tubular retort under
an atmosphere of high-purity argon and cooled to room temperature in the furnace outlet zone
with water cooling at rates of 1.5 and 3.0 K.sec™.

The composition of the materials used is given in Table 1, the composition of the powder
mixes is given in Table 2.

Table 1 Chemical composition of basic materials
Tabul’ka 1 Zlozenie zakladnych materialov

Basic material? Chemical composition of basic material? [wt.%]
Fe Si Mn Cr Mo C
ASC100.29 99.81 0.00 0.13 0.05 0.01 0.00
Astaloy85Mo 98.93 0.00 0.17 0.05 0.85 0.00
AstaloyCrA 98.01 0.03 0.13 1.80 0.03 0.00
AstaloyCrM 96.32 0.03 0.15 3.00 0.50 0.00
AstaloyCrS 98.82 0.03 0.15 0.85 0.15 0.00
H45 56.00 8.00 0.00 32.00 0.00 4.00
H46 48.00 6.00 42.00 0.00 0.00 4.00
H47 35.30 6.00 28.00 27.00 0.00 3.70
H166 56.10 7.50 33.00 0.00 0.00 34
H200 49.50 9.00 40.00 0.00 0.00 1.5

Dzakladny materidl, ?Chemické zloZenie zdkladného materialu
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Table 2 Composition of powder mixes
Tabul’ka 2 Zlozenie praskovych mixov

Chemical composition of basic material? [wt.%]
Powder mixes"
Fe Si Mn Cr Mo C

ASC + 4%H45 97.89 0.39 0.13 1.09 0.01 0.49
ASC + 4%H46 97.83 0.21 1.46 0.05 0.01 0.44
ASC + 4%H47 97.49 0.32 0.88 0.82 0.01 0.48
Ast85Mo + 4%H45 96.89 0.38 0.17 1.24 0.83 0.49
Ast85Mo + 4%H46 97.23 0.24 1.23 0.05 0.81 0.44
Ast85Mo + 4%H47 96.50 0.34 0.94 0.91 0.82 0.49
AstCrA + 4%H45 96.31 0.47 0.13 2.60 0.03 0.46
AstCrA + 4%H46 96.15 0.31 1.44 1.65 0.03 0.42
AstCrA + 4%H47 95.45 0.44 1.03 2.58 0.03 0.47
AstCrM + 4%H45 95.01 0.44 0.15 3.49 0.47 0.44
AstCrM + 4%H46 94.91 0.28 1.07 2.87 0.48 0.39
AstCrM + 4%H47 94.26 0.45 0.91 3.48 0.46 0.44
Ast85Mo + 4%H166 96.39 0.32 1.44 0.03 0.84 0.69
Ast85Mo + 4%H200 96.34 0.35 1.72 0.02 0.86 0.71
AstCrS + 4%H166 96.53 0.31 1.45 0.84 0.13 0.74
AstCrS + 4%H200 96.20 0.36 1.73 0.85 0.13 0.73

DPragkovy mix, ?Chemické zloZenie zdkladného materialu

RESULTS AND DISCUSSION

It is clear that the iron powder steels ASC100.29 and lower alloyed master alloys such
as Astaloy85Mo and AstaloyCrA cannot be hardened by sinterhardening at industrially
achievable cooling rates, at least at this carbon content. AstaloyCrM can form a martensitic
microstructure without any additional alloying elements (Kalss, 2007) (Krauss, 2015). For all
other steels it is clear that if martensitic hardening is desired at conventional sinterhardening
cooling rates, additional alloying elements need to be added to the material.

Figure 2 shows the CCT diagrams of various base powders + 4% H45 (MA Cr-Si).
These CCT diagrams are shown here as examples. Similar CCT diagrams were created with
other base powder + MA combinations. Sintered steels made from ASC100.29 iron powder, at
least with the carbon content chosen here, cannot be hardened under standard sintering
conditions, even in combination with MA, with the exception of H47 (MA Mn-Cr-Si)
(Geroldinger, 2019). In contrast, hybrid alloy powder mixtures can be hardened by
sinterhardening at a cooling rate of 1.5 K.sec™!, sometimes even lower. This means that at the
carbon content considered in this study, pre-alloyed powders should be combined with MA
powder (hybrid alloying) if a martensitic microstructure is desired. Although it is possible to
achieve a martensitic microstructure with AstaloyCrM without MA, the combination with MA
leads to even higher macro- and microhardness. The Figure 3d shows the CCT diagram of the
hybrid powder mixture AstaloyCrM + 4% H45. It can be observed that at cooling rates of 1
K.sec! and 0.75 K.sec™! pearlite formation occurs in the hybrid alloy material. The reason for
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this finding is that the heat treatment at the investigated temperatures and times may not be
sufficient to completely dissolve the carbides in the material, and therefore less dissolved
carbon is available in the austenitic matrix than it should be nominally (Kozovy, et al. 2023).

a, Asc 100.29_0.6C + 4%H45 (0.49C) b" Astaloy 85Mo_0.6C + 4%H45 (0.49C)
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Figure 2 CCT diagram of powders obtained by mixing with 4%H45 (Geroldinger, 2019)
Obrazok 2 CCT diagram praskov, ziskanych mixom s 4%H45 (Geroldinger, 2019)

Regarding the combination of MA with Astaloy85Mo and AstaloyCrS, to characterize
the sinterhardening and in particular to reliably estimate the effective cooling rates leading to
martensitic microstructures, CCT diagrams were evaluated in a quenching dilatometer. These
are shown in Figure 3 (Geroldinger et al, 2024), the transformations were identified from the
cooling graphs. These diagrams clearly confirm that the pre-alloyed materials do not sinter and
do not harden even at higher carbon levels; quenching would require cooling rates that are
significantly higher than those possible in industrial furnaces. The addition of pre-alloyed MA
drastically increases the hardenability: even at cooling rates as low as 1 K.sec!, no bainitic or
pearlitic transformation is visible. This is in agreement with the relatively high hardness levels
after sintering and the partially martensitic microstructures after sintering.

However, it should be considered that, as reported for example by (Geroldinger et al,
2021), small areas with bainitic or pearlitic transformation are not shown in the CCT diagram.
Although the diagram predicts fully martensitic microstructures, metallography may reveal
some pearlite or bainite, especially in the cores of the largest particles of the former base
powder. In practice, the system tolerance is relevant in terms of cooling rate. For Astaloy85Mo-
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MA-C, the CCT diagram indicates bainite at cooling rates <1 K.sec™!. In this material, even the
cores of the larger particles were sufficiently alloyed, leading to full martensitic transformation
at 3 K.sec™.

a, AstaloyCrS_0.75C+4%H166 o b, Astaloy85Mo_0.7C+4%H166
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Figure 3 CCT diagram of powders obtained by mixing with 4%H200 (Geroldinger et al,
2024)

Obrazok 3 CCT diagram praskov, ziskanych mixom s 4%H200 (Geroldinger et al, 2024)

The admixture of master alloys has a high impact on the hardenability of the material,
and, therefore, the mechanical and fatigue properties. This type of alloying is very promising
for improving the properties of low-alloy steels (such as AstaloyCrS and AstaloyCrA) while
maintaining a competitive price.

CONCLUSION

Sinterhardening combines the advantages of sintering and hardening into a single
operation. Secondary operations are minimized and greater dimensional accuracy is achieved.
The article presents the results of sinterhardening of the materials ASC100.29, Astaloy85Mo,
AstaloyCrA, AstaloyCrM and Astaloy CrS with the addition of MA, as individual authors have
investigated and published the results of experiments with powder mixes. Hybrid alloys were
compared with mixtures of MA and a reference material - pure Fe. Hardenability during

24 ACTA FACULTATIS TECHNICAE, XXX, 2025 (2): 18-26



sinterhardening of all materials was determined by creating Continuous Cooling
Transformation (CCT) diagrams, recorded at different cooling rates.

We can summarize the results and conclude that the hybrid alloying technique, which
means the combination of pre-alloyed powder and MA powder, significantly improves
hardenability compared to steels made from pure iron powder. Martensitic hardening of pure
Fe powder could be achieved at a rate of 3 K.sec™! and MA of the Fe-Mn-Cr-Si-C type. The use
of a base powder pre-alloyed with 0.85% Mo in combination with MA leads to hybrid alloy
mixtures with high hardness and good hardenability. Purely martensitic homogeneous
microstructures can be achieved with all hybrid alloy materials using AstaloyCrM as the base
powder. Materials based on AstaloyCrM show the smallest differences in hardness at cooling
rates of 3 and 1.5 K.sec™!.
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ABSTRACT: The aim of the article is to design and evaluate predictive models that can estimate the energy
consumption of a milling operation based on predefined technological parameters chosen based on statistical
results. Experimentally measured data were analysed to examine the relationship between input variables such as
cutting speed, feed rate, and tool geometry, and the output variable, which is power consumption of machine.
Several machine learning algorithms were applied and compared, including Artificial Neural Networks, Gaussian
Process Regression, Decision Trees, Linear Regression, Kernel Regression, and Effective Linear Regression.
Based on the comparison of accuracy, computational efficiency and their ability to predict the target variable with
the smallest possible error rate.

Key words: energy consumption, milling, cutting parameters, artificial intelligence.

ABSTRAKT: Ciel'om ¢lanku je navrhnit a vyhodnotit’ predikéné modely umoziujuce odhadnut’ spotrebu energie
pri operacii frézovania na zaklade vopred definovanych technologickych parametrov, ktoré boli zvolené podl'a
predchadzajuce;j statistickej analyzy. Experimentalne namerané data boli analyzované s cielom preskimat’ vzt'ah
medzi vstupnymi premennymi — ako st rezna rychlost, posuv nastroja a geometria nastroja — a vystupnou
premennou, ktorou je prikon obrabacieho stroja. Na predikciu boli aplikované a porovndvané viaceré algoritmy
strojového ucenia vratane neurdnove;j siete, regresie pomocou Gaussovskych procesov, rozhodovacich stromov,
linearnej regresie, Kernel regresie a efektivnej linearnej regresie. Modely boli vyhodnocované z hl'adiska presnosti
predikcie, vypoctovej efektivnosti a ich schopnosti minimalizovat’ chybu pri odhade.

KPiacové slova: energeticka narocnost’, frézovanie, rezné parametre, spotreba elektrickej energie, umela
inteligencia

INTRODUCTION

In today's age we can’t image living without items that are manufactured from wood,
there are alternatives, but they are not as plentiful and cost efficient as wood. Wood and wood-
based products are all around us from moment we wake to moment we go to sleep. Between
raw material and final product is always several steeps, from harvesting resource in our case
wood which is plentiful and renewable. There is a lot of types of wood, and every material has
its technical parameters. In this study material used in experiment is spruce wood. Decision on
which base was material chosen were to availability and price.

When raw material is transformed to required product, several steps must occur. In our
case focus will be on woodworking machine. There are several types of machines that can
transform to required parameters ranging from CNC machine centres that can create required
shape with specific parameters and surface quality to simple ones like saw cutting planks in
simple carpentry. Every process has parts that can be slightly improved and analysed. Tools of
artificial intelligence can offer potential improvements of techniques after rigorous analysis.

ACTA FACULTATIS TECHNICAE, XXX, 2025 (2): 27-40 27



This analysis can focus on challenges as tool wear, process efficiency, downtime,
quality control, programming complexity and waste material.

Currently artificial intelligence offers potential as mentioned in Survey on machine
learning.

There are two types of milling process monitoring, direct (offline) and the other one is
indirect (online) monitoring. The offline monitoring usually uses a fiber optic sensor or charge-
coupled device (CCD) camera, electric resistance, displacement, and acoustic emission, which
can measure the dimensional changes in cutting tools and machined parts with high accuracy
(Pasandidehpoor et al. 2025).

Real opportunity is real-time feedback control, autonomous decision making,
explainability/transparency of Al in decision making, data acquisition challenges, handling
variability of materials and scalability. There is also perhaps possibility or combining Al with
simulation creating digital twins.

Artificial intelligence as tool that supports manufacturing has significant opportunities
for overall improvement of production process. In milling process there is several opportunities
for improvement with combination of CNC machining. These opportunities are ranging from
creating most cost-efficient tool path, to modifying cutting parameters to conserve energy, with
keeping required surface quality. That leads me to practical opportunities that artificial
intelligence could bring to manufacturing such as sensor integration, data collection, model
development, real time control, optimization of process planning, maintenance, tool
management and quality control. As mentioned by Hirsch and Friedrich (2025) authors focused
on study that explores data-driven methods, in particular deep learning, for tool wear prediction.
In research by Onyegu and Mgbemena (2023) authors focused on selected milling parameters
(feed, cut depth, speed) that maximize removal rate while keeping tool wear at acceptable level
in order to reduce tooling costs and reduce downtime on machine. In research by Cakiroglu et
al. (2022) authors focused on surface quality and power consumption of milling process using
Artificial neural networks. Their study focused on practical implications such as reduced energy
costs in CNC wood manufacturing, improved surface finish consistency and enhanced decision-
making in computer-integrated manufacturing systems.

The main goal of the article is to verify the possibilities of using artificial intelligence
in a specific manufacturing operation, namely milling. The intention is to create a predictive
machine learning model that will be able to estimate the electrical power consumption of the
machining equipment based on selected technological parameters, such as cutting speed, feed
rate and tool angle. Such a model will allow predicting the energy intensity of the process
without the need for direct measurement, which is practical especially in cases where
measurement is complicated, time-consuming, expensive or otherwise impractical.

MATERIAL AND METHODS

Measurement is done on bottom spindle moulder which is a stationary woodworking
machine designed for precision shaping and profiling of wooden components. During
operation, the wooden workpiece is guided along the table and brought into contact with the
rotating cutter, enabling the creation of complex profiles, grooves, rebates, and joint geometries.
In this process, conventional (up) milling is commonly used, where the cutter rotates against
the feed direction to ensure greater control, improved surface finish, and reduced risk of tear-
out—especially important when working with softwoods. Machine features a vertically
mounted spindle located beneath the worktable, onto which various cutter heads can be
installed. Material that is used during experiment is spruce wood with dimensions of 20 x 100
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x 70 mm. The material was machined using conventional (up) milling on a bottom spindle
moulder to ensure precise surface quality and dimensional accuracy.
The experiment was repeated for all combinations of technological parameters, which

are listed in Table 1. Each measurement consists of the following steps:

* replacement of the milling head with the selected tool face geometry,

» setting of the cutting speed (v¢) and feed speed (vy),

* the course of the milling process,

» recording of the power input during the entire experiment.

Table 1 Machining Parameters
Tabul’ka 1 Parametre obrabania

Parameters Values
Feed speed! vi[m.min""] 6, 10, 15
Cutting speed? v, [m.s™] 20, 40, 60
Rake angle® y = 15°, 20°
Depth of cut®) a, [mm] 1

DPosuvna rychlost,, 2 Rezné rychlost, *Uhol &ela, ¥ Hibka rezu

To record data on electricity consumption in real time throughout the experiment, a
measurement system was set up as shown in Fig. 1. The main part is a frequency converter
connected directly to a three-phase electrical network (phases L1, L2, L3). The output voltage
from the converter is then fed into a sine filter, which ensures a smooth transfer of energy to
the bottom spindle moulder, which serves as a machining device (Korcok, 2019).
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Fig. 1 Apparatus for measuring cutting power
Obr. 1 Aparatura na meranie rezného prikonu
1 — Frequency converter UNIFREM 400 007 M with sine filter SKY3FSM25 !
2 — Three-phase asynchronous motor 2
3 — Bottom spindle milling machine SVF 3
4 — Personal computer (laptop) ¥

D Frekvenény meni¢ UNIFREM 400 007 M so sinusovym filtrom SKY3FSM25, ? Trojfazovy
asynchronny motor, ¥ Spodné vretenova frézka SVF, ¥ Osobny po¢itaé (notebook)
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Technical parameters of frequency converter UNIFREM 400 are shown in Table 2.
Spindle miller technical parameters are shown in Table 3.

Table 2 Technical parameters of frequency converter UNIFREM 400 007 M
Tabul’ka 2 Technické parametre frekvenéného meni¢a UNIFREM 400 007 M

M ~ guadratic load"
Motor power Pnom 2 [kW] 1,1
Rated inverter output current for quadratic load Ino® [A] 3,1
M ~ constant load 4
Motor power Pnowm 2 [kW] 0,75
Rated inverter output current Inkso ® [A] 2,2
Maximum inverter output current Inkeo © [A] 3,3
Maximum inverter output current Ink2 7 [A] 4,4
Rated inverter output current /v ® [A] 3,1

Dkvadratické zétaz, 2’Vykon motora Pnom, YNominalny vystupny prad menica pre kvadraticka
zataz Ing, ¥ Konstantnd zataz, > Nomindlny vystupny prad menica Inkeo, “Maximdlny.
vystupny prad menica Ixkeo, ) Maximalny vystupny prad menica Ixk2, ¥ Nominalny vystupny
prad menica INN.

Table 3 Technical parameters of bottom spindle miller
Tabul’ka 3 Technické parametre spodnej vretenovej frézky

Parameter Value

Voltage system " [V] 360 /220

Power consumption 2 [kW] 4

Frequency 3 [Hz] 50

Contact resistance 4 [Q] 0.03

Manufacturer 5 Maschinenfabrik Ferdinand Fromm
Year of manufacture © 1976

DNapitovy system, 2Prikon, *’Frekvencia, ¥Odpor privodov, >Vyrobca, ®Rok vyroby

A typical machine learning algorithm is composed of three main components (Berkeley, 2020):

1. Decision process: a process of calculation and steps that take data and estimate what
kind of pattern the algorithm is trying to find.

2. Error function: a method of measuring the quality of the estimate by comparing it with
known examples. Whether the decision process proceeded correctly, if not, what the
impacts of the decision were.

3. Update or optimization process: the algorithm observes errors and, based on them,
updates how the decision process reached the decision and improves them in the
future.

The implementation of Al in work environments leads to more efficient and cost-effective
workflows. Together with the accuracy of modern AI, this contributes to the overall
improvement of performance in the workplace (Duggal 2024).

Analysing often very large data sets to identify patterns can be time-consuming,
financially demanding, and tiring for people. Al is simply able to identify significant trends,
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uncover key insights, and recommend solutions based on processed data, which in many cases
helps in making informed decisions (Duggal 2024).

The use of artificial intelligence in manufacturing is diverse and does not only concern
streamlining production processes and reducing costs, but in addition to these benefits, Al also
brings other benefits to companies, such as quality control, supply chain management,
improving customer experience, and forecasting demand (Wuest, 2016).

The manufacturing industry needs a large logistics centre to ensure the smooth operation
of the entire production process in logistics or warchouse management. The use of machine
learning-based solutions helps automate various tasks associated with logistics, which leads to
higher efficiency and lower costs. The average American business loses approximately
$170,000 annually due to manual and time-consuming processes such as logistics or
administrative tasks related to production. Repetitive tasks can be automated using machine
learning, saving significant amounts of time and money. In addition, machine learning
algorithms can optimize resource management — for example, Google has managed to reduce
data centre cooling costs by up to 40% thanks to DeepMind artificial intelligence
(ITConvergence, 2020).

Decision tree algorithms are widely used in machining because of their interpretability
and low computational cost. In milling, they are often employed to predict tool wear or classify
machining conditions based on features extracted from vibration, acoustic emission, and force
signals. The model splits data according to critical thresholds, making it straightforward to
implement in real-time monitoring. For example, a decision tree may identify chatter states or
tool wear levels using vibration amplitude and spindle speed as decision nodes. Liu et al. (2022)
demonstrated the effectiveness of decision tree-based models for chatter detection in milling,
enabling adaptive control and stable cutting conditions (Liu et al., 2022).

Support Vector Regression is well-suited for modelling nonlinear relationships in
manufacturing, particularly when data are moderate in size and precision is required. In milling,
SVR has been applied to predict surface roughness and cutting force variations as a function of
spindle speed, feed rate, and depth of cut. It can handle complex interactions between process
parameters and machining outcomes through kernel functions, such as RBF or polynomial
kernels. Natarajan et al. (2025) used SVR within an ensemble framework to predict surface
roughness in polymeric machining, showing improved accuracy compared to classical linear
models (Natarajan et al., 2025).

Gaussian Process Regression provides not only accurate predictions but also uncertainty
quantification, which is especially valuable in high-value machining operations. In milling,
GPR can predict tool wear progression and surface roughness while providing confidence
intervals, enabling more reliable process planning. Because it captures correlations in data
without assuming a fixed functional form, GPR is ideal for processes with nonlinear and noisy
dynamics. Such probabilistic modelling supports decision-making in predictive maintenance
strategies. Similar methods have been applied in tool condition monitoring to enhance
reliability in smart manufacturing systems (Liu et al., 2024).

Ensemble learning methods combine multiple base learners (e.g., decision trees, SVR
models) to create a more robust and accurate predictive model. In milling, ensemble algorithms
such as Random Forest or Gradient Boosting have been successfully applied to predict surface
roughness, detect chatter, and monitor tool wear under varying machining conditions. Wang et
al. (2024) proposed an ensemble feature fusion model for tool condition monitoring, achieving
high accuracy and robustness compared to single-model approaches (Wang et al., 2024).
Ensemble models are particularly advantageous for handling noisy industrial sensor data.

Artificial Neural Networks have demonstrated excellent capability in capturing complex
nonlinear relationships in milling processes. By processing multivariate sensor data (e.g.,
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vibration, cutting forces, temperature, acoustic emission), ANNs can predict tool wear, estimate
surface roughness, and optimize machining parameters in real time. Hung et al. (2020)
compared ANN with classical regression models for predicting surface roughness and found
that ANN provided superior accuracy and adaptability across different cutting conditions (Hung
et al., 2020). Deep learning extensions further enable adaptive control and fault detection in
automated milling systems.

Linear regression (LR) remains one of the most accessible and interpretable approaches
for modelling machining processes, especially under stable conditions. In milling, LR has been
used for quick estimation of surface roughness or cutting force behaviour when relationships
between inputs and outputs are approximately linear. It serves as a baseline model for process
monitoring and is easy to implement directly on CNC systems for real-time feedback. Hung et
al. (2020) demonstrated that while linear regression is less accurate than ANN, it can still
provide fast and practical predictions for certain machining regimes (Hung et al., 2020).

Kernel regression techniques, including RBF and polynomial kernels, enable the
extension of linear regression to capture nonlinear process dynamics without the complexity of
deep learning. In milling, KFR has been applied to predict dimensional accuracy, chatter onset,
and surface roughness, particularly when interactions between parameters are smooth but
nonlinear. Compared to SVR, kernel regression offers simpler tuning and good interpretability.
Natarajan et al. (2025) demonstrated how kernel-based models enhance surface finish
prediction in polymeric machining environments (Natarajan et al., 2025).

Efficient Linear Regression is a computationally optimized version of classical linear
models, suitable for real-time machining control. Its low memory footprint and high-speed
computation make it ideal for embedded applications such as adaptive feed rate control or on-
machine tool wear compensation. While not as flexible as nonlinear models, ELR provides
reliable and fast parameter estimation. This is particularly valuable in closed-loop control
systems where machining forces must be regulated dynamically. Miiller et al. (2023) discussed
the use of efficient linear models in adaptive machining strategies for Industry 4.0 production
cells (Miiller et al., 2023).

RESULTS & DISCUSSION

Measured data during idle time (power during idle Pyo) and time with which tool is
under load (power during cutting Pp) can be seen in the Fig. 2. This data from experiment were
sorted to two subgroups and that is Ppo and Pp. Subsequently, the average value of the Pyo group
was calculated and subtracted from each individual P, measurement. This procedure yielded P
(cutting power), which represents the output variable used in further data processing and
analysis.

The same method was applied to all measurements obtained under different input
parameter conditions. The processed data were then compiled into a comprehensive table,
where each P. value was associated with the corresponding machining parameters.
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Fig. 2 Course of measured power consumption during one experiment
Obr. 2 Priebeh meraného prikonu pocas jedného experimentu

Next part was statistical evaluation of data that was acquired during experiment.
Statistical evaluation was done in program statistical from company TIBCO. After descriptive
statistics are used to describe and summarize the characteristics of a dataset. Descriptive statistic
is shown in Table 4. Dataset is then analysed using ANOVA and Duncan’s test to find which
factors differ between data and affect power consumption. Plot of means and confidence
intervals from measured data are shown in Fig. 3.

Table 4 Descriptive statistics
Tabul’ka 4 Popisna Statisticka analyza

Descriptive Statistics
Variable
Valid N Mean | Minimum | Maximum | Std.Dev.
Angle y [°] 900 17,50 15,00 20,00 2,50
Cutting speed vc [m.s™] 900 40,00 20,00 60,00 16,34
Feed speed vi [m.min] 900 10,33 6,00 15,00 3,68
Power consumption P 900 125,85 37,93 232,75 47,92
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Fig. 3 Analysis of variance of measured power consumption
Obr. 3 Analyza rozptylu nameranych hodno6t prikonu

After initial processing and cleaning of the measured data, the data were imported into
the MATLAB environment, specifically into the Regression Learner application. In this
application, the adjusted measurement data were entered as input variables, while the target
variable was the power consumption of machine during the technological operation. Next step
is training all available regression models.Table Table 5 contains model name and model
accuracy. Graphical interpretation is showed in Fig. 4.

Table 5 Models and their accuracy

Tabul'ka 5 Modely a ich presnost’

Mﬁg_el Model Name Accuracy (R?)
1 Artificial Neural Network ") 0.95
2 Ensemble ?) 0.95
3 Gaussian Process Regression %) 0.95
4 Support Vector Regression 4) 0.95
5 Decision Tree 5 0.95
6 Linear regression © 0.93
7 Kernel regression 7) 0.93
8 Effective linear regression 8 0.88

34

ACTA FACULTATIS TECHNICAE, XXX, 2025 (2): 27-40



DUmel4d neurénova siet, ?Kombinicia modelov, »Regresia pomocou Gaussovych
procesov, YRegresia pomocou metddy podpornych vektorov, YRozhodovaci strom,
9Linearna regresia, ’Regresia s pouzitim jadrovych (Kernelovych) funkcii, ®Efektivna
linearna regresia

Model No.

w

0

Kl
o
[}

0,7 0,8 0,9 1
Accuracy (R%)

Fig. 4Prediction models with highest accuracy
Obr. 4 Predikéné modely s najvacsou presnostou

To better illustrate the performance of the tested regression models, two representative
cases were selected. The Fig. 5 shows the most accurate model, and the Fig. 6 shows the least
accurate model based on the coefficient of determination (R?) value and a visual comparison of
predicted values with actual values.

These figures show the differences between predicted and actual values during the
validation phase. In the case of the most accurate model, the values are distributed close to the
ideal diagonal, which indicates a high degree of agreement and reliable prediction. On the
contrary, significant deviations are observed in the worst model.

Such a comparison allows to point out the differences in the performance of the models
in a simple and illustrative way and to justify the choice of the most suitable solution for
practical use in predicting power consumption in milling.
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Obr. 5 Porovnanie predikovanych a skuto¢nych hodnot v najpresnejSom modeli
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Fig. 6 Predicted and actual values comparison chart least accurate model

Obr. 6 Porovnanie predikovanych a skuto¢nych hodnét najmenej presny model

The selected models were further compared based on their ability to predict the target
variable with the smallest possible error rate. The main indicator of accuracy was the root mean
square error (RMSE). This metric allows an objective assessment of how close the predicted
values are to the actual measured data. Error rate is shown in Table 6. Sorted version of graph
is shown in Fig. 7.
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Table 6 Root mean square error of models
Tabul’ka 6 Chybovost’ modelov

Mﬁg_el Model Name (Eﬁgg;a&?’]
1 Artificial Neural Network 10,20
2 Ensemble 2 10,19
3 Gaussian Process Regression 3 10,20
4 Support Vector Regression 4 10,27
5 Decision Tree 9 10,20
6 Linear regression © 12,92
7 Kernel regression 7 13,02
8 Effective linear regression 8 16,89

DUmela neurénova siet, ?Kombinicia modelov, »Regresia pomocou Gaussovych
procesov, YRegresia pomocou metddy podpornych vektorov, YRozhodovaci strom,
9Linearna regresia, ’Regresia s pouzitim jadrovych (Kernelovych) funkcii, ®Efektivna
linearna regresia

Model No.
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Error rate RMSE [W]

Fig. 7 Error rate of predictive models
Obr. 7 Chybovost predikénych modelov

In addition to prediction accuracy and error rate, the time required to train a regression
model is also an important factor in choosing a suitable regression model. This data is especially
important in the practical application of models in production processes, where it is necessary
to react quickly to changes in input parameters or data updates. Individual models were also
compared in terms of computational complexity, specifically based on the time required to train
them in the MATLAB environment. Time required to train in MATLAB environment is shown
in Table 7. Sorted version of graph is shown in Fig. 8.
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Table 7 Time of training selected models
Tabul’ka 7 Cas trénovania modelov

Model No. | Model Name Time [s]
1 Artificial Neural Network 2,93
2 Ensemble 2 3,06
3 Gaussian Process Regression 3 9,25
4 Support Vector Regression 4 3,09
5 Decision Tree 5 2,64
6 Linear regression © 5,35
7 Kernel regression 7 7,49
8 Effective linear regression 8 1,08

DUmela neurénové siet, ?’Kombinicia modelov, YRegresia pomocou Gaussovych
procesov, YRegresia pomocou metddy podpornych vektorov, YRozhodovaci strom,
9Linearna regresia, ’Regresia s pouzitim jadrovych (Kernelovych) funkcii, ®Efektivna
linearna regresia

N
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Training Time [s]

Fig. 8 Time required to train model
Obr. 8 Cas trénovania modelov

The goal is design and evaluation selected types of algorithms and choosing the most
suitable one. The algorithm is chosen based on accuracy of algorithm, time required for training
of data and predicted rate of error compared to data acquired during experiment. Based on Fig.
Fig. Fig. andFig. , every algorithm has its strengths and weaknesses. For example, the simple
linear regression model required the least amount of computing time, yet did not deliver the
highest accuracy. This observation aligns with the established literature: while linear regression
remains fast and interpretable, its flexibility and ultimate predictive performance are often
limited compared to non-linear or ensemble approaches. As noted by Gzar et al. (2022) or
Kadnar et al. (2023), linear regression exhibited low computational complexity, but also
relatively lower accuracy compared to more complex models such as random forest or neural
networks. Depending on size of analysed sample, computing time can be critical factor,
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whereby it does not play significant role on samples of smaller size. Algorithms Artificial
Neural Network, Ensemble, Gaussian Process Regression, Support Vector Regression and
Decision Tree have highest predicted accuracy but differ in error rate and computational time.
The choice of a particular algorithm is also influenced by the amount of data needed to
supplement its learning and the need for its implementation in real time in industrial operation.

For practical implementation of real time decision making by algorithms several steps
need to be taken care of, such as training data, evaluation and decision-making process. In case
of decision tree requirement condition has to be chosen carefully, when choice is implemented
and what impact it implements to overall process. With data that’s that is evaluated and trained
based on input and output parameters process can be simplified to elementary steps that
algorithms can handle. It could be used in conjunction with hybrid models that offer alternative
tool paths or spindle speeds. It could be simply used to check power consumption and notify
algorithm or personnel in case spike occurs and or offer potential solutions for issue based on
programming for personnel overseeing processes.

CONCLUSION

Based on the comparison of all tested regression models in terms of prediction accuracy,
error rate and computational complexity, the decision tree was selected as the most suitable
model. This model achieved high accuracy, low average error and very short training time in
comparison with other models. In addition, the decision tree has the advantage of simplicity of
interpretation, which is practical when implemented in a real production environment. For this
reason, the decision tree was selected as the most suitable model for predicting energy
consumption in milling, based on technological parameters.
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